
Decision Support Systems 64 (2014) 100-108

Contents lists available at ScienceDirect

Decision Support Systems

ELSEVIER journal homepage: www.elsevier.com/locate/dss

Intelligent trading of seasonal effects: A decision support algorithm based
on reinforcement learning

Cross Mark

Dennis Eilers a. Christian L. Dunis b ' Hans-jorg von Mettenheim a.* , Michael H. Breitner a

'Leibniz Universitiit Hannover,lnstitutfilr Wirtschaftsinfonnatik, Kiinigsworther Platz 1, 30167 Hannover, Germany
b Horus Partners Wealth Management Group SA, 1, rue de Ia Rotisserie, CH-1204 Geneva, Switzerland

ARTICLE INFO ABSTRACT

Article history:
Received 13 December 2013
Received in revised form 11 April 2014
Accepted 28 April2014
Available online 29 May 2014

}EL classification:
G17
C45
C88

Seasonalities and empirical regularities on financial markets have been well documented in the literature for
three decades. While one should suppose that documenting an arbitrage opportunity makes it vanish there are
several regularities that have persisted over the years. These include, for example, upward biases at the turn
of-the-month, during exchange holidays and the pre-FOMC announcement drift Trading regularities is already
in and of itself an interesting strategy. However, unfiltered trading leads to potential large drawdowns. In the
paper we present a decision support algorithm which uses the powerful ideas of reinforcement learning in
order to improve the economic benefits of the basic seasonality strategy. We document the performance on
two major stock indices.

Keywords:
Reinforcement learning
Seasonalities
Trading system
Neural networks

1. Introduction

Seasonalities and empirical regularities on financial markets are one
of the most frequently studied phenomena in the scientific literature.
This is due to simple but promising assumptions, which can easily be
translated into a trading strategy. Hence, only investigating this phe
nomenon has lost its appeal. Therefore, it is our motivation, to not sim
ply create a trading system based on seasonalities, but to verify the
signals of this strategy with an intelligent filter in order to provide a
robust decision support.

The procedure for filtering is the focus of our work. We use the
promising approach of reinforcement learning (RL) to realize an effec
tive filtering. This heuristic method is often used in unstructured and
complex situations and provides very good results in the field of robot
ics, but also increasingly in economic decision-making. Our goal is to
find a policy with RL in order to filter the output signals of the basic
strategy to improve the reward to risk ratios.

A novel approach is used. To link the trading decision with a reward,
we use an artificial neural network (ANN). The same ANN (a simple three

* Corresponding author. Tel. : +49 511 762 4982.
E-mail addresses: eilers@iwi.uni-hannover.de (D. Eilers), christian.dunis@hpwmg.com

(C.L. Dunis), mettenheim@iwi.uni-hannover.de (H.-j. von Mettenheim),
breitner@iwi.uni-hannover.de (M.H. Breitner).

URL: http://www.iwi.uni-hannover.de (H.-j. von Mettenheim).

http://dx.doi.org/1 0.1 016/j.dss.2014.04.011
0167-9236/© 2014 Elsevier B.V. All rights reserved.

© 2014 Elsevier B.V. All rights reserved.

layer feed forward network) acts as decision support to determine the op
timal parameters for future trades. We use a combination of three major
research areas (RL, ANN, seasonalities). We only introduce the basics of
each topic. For an in-depth insight many suggestions can be found in
the corresponding section. This paper aims to demonstrate the strength
of a combination of several economic and interdisciplinary methods.

Our paper is divided into the following parts. Section 2 presents the
ideas and methods. Section 2.1 describes the results of a brief analysis
on seasonalities. It shows the promising approach of this surprisingly
simple strategy. We investigate two major indices (DAX and S&P 500)
on detectable trading regularities like upward biases at the tum-of
the-month, exchange holidays and the pre-FOMC (Federal Open Market
Committee) announcement drift. Section 2.2 deals with RL and the
detailed description of our modified version. Section 2.3 offers a small
introduction to the world of artificial neural networks. Section 3
shows a merger of the mentioned disciplines in a fully automated and
self-learning trading system. In Section 4 the results are presented and
discussed. Section 5 discusses possible limitations of the strategy and
provides an outlook for further research. Appendix A shows the com
plete algorithm in pseudocode.

2. Ideas and methods

In this section we present an overview of the methods and ideas.
First, previous studies about seasonalities on financial markets are

D. Eilers etaL 1 Dedsion Support Systems 64 (2014) 100-108 101

introduced in Section 2.1 . After that we test whether the basic approach
used for our subsequent programming is performing significantly better
than a random strategy. Furthermore, in Section 2.2 reinforcement
learning and our modifications are described. Section 2.3 gives an
insight into the field of artificial neural networks.

2.1. Seasonalities and empirical regularities

October. This is one of the peculiarly dangerous months to speculate in
stocks in. The others are july, january, September, April, November,
May, March, june, December, August, and February.

[Mark Twain (1894).]

We give a very brief overview on the existing seasonal effects litera
ture and provide notes for an in-depth exploration of this topic. For our
trading system, we focus on three interesting assumptions. Upward
biases at the tum-of-the-month described by Ariel [2], during exchange
holidays examined by French [10] and the pre-FOMC announcement
drift investigated in a highly topical paper by Lucca et al. [20].

In the literature several other seasonalities are described, neverthe
less as an illustration we only deal with the above three. A detailed list of
various calendar effects with corresponding tests is offered by Hansen
et al. [13]. They found significant calendar effects in most major world
indices. Some of the strongest evidence has been demonstrated for
small- and mid-cap indices. However, they come to the conclusion
that these effects are less important since the 1990s. Sullivan et al.
[30] take a more critical position on this phenomenon. It is an interest
ing study how methods of data mining affect the significance of
seasonalities. Further references are [7] with an analysis of tum-of
the-month and pre-holiday effects, [9] with effects on the options mar
ket, [14] with an extended investigation of [2], as well as [3,16,25,27] .

The question is, which assumptions are necessary to apply
seasonalities in a trading system? Our approach assumes that the
three aforementioned events reduce uncertainty in the market after
their occurrence. E.g. fund managers often adjust their portfolios at
the beginning of the month. Exchange holidays are associated with a
trading break, leading to more uncertainty beforehand, which is subse
quently dissolved. The FOMC results lead (regardless of their actual de
cision) to more planning reliability, and thus to more investments.
These considerations allow the conclusion that it could be possible to
benefit from these trends with a simple trading strategy.

Therefore, we wanted to test the hypothesis that these events lead to
an average increase in the share indices. As a basis we used the data of the
German stock index (DAX) and the S&P 500 since the year 2000 to 2012.
For a test run we used a simple strategy which is easy to analyze and pro
gram. At the day before a certain event the close price of the index will be
stored. This will be compared with the close price of the second day after
the event. The strategy has the advantage that, with these relatively short
holding periods, the risk of open trades during stock market crashes will
be reduced. In practice this can be done by an index certificate. The trans
action costs are neglected here. The evaluation (Table 1) showed that, in
fact, a trend toward rising prices can be seen.

This approach is based on the investigations ofLakonishok et al. [16]
(turn of the month effect). With their study using data from the Dow
jones Industrial Average, they have shown that significantly higher

Table 1
Price reaction to events (values in percent) .

Event

Turn-of-the month
Pre-FOMC announcement drift
Exchange holidays
Overall
Each stock exchange day

Upturns DAX

57.96
68.75
75.00
63.11
52.32

Upturns S&P 500

61.15
60.94
55.08
58.60
52.94

returns are possible around the turn of a month. The trading days of
L 1 (to month changes) to t3 resulted in an increase of 0.473%, while
in the average score (with the same period length), a value of0.0612%
was achieved. For an easy implementation in a decision algorithm, we
apply this approach to all three event types. According to Lucca et al.
[20] we shift this window one day backward (event is set one day before
the actual statement) for the pre-FOMC event. They demonstrated on
the basis ofintradaydata (1994-2011) thatthere is a significant upward
trend in the S&P 500 on the day of the statement. Regarding the holiday
effects, the literature is ambiguous. Distinction can be made between
pre- and post-holiday effects [13] . We treat the holiday effects, like a
tum-of-the-month (post-holiday effect).

As mentioned, we want to benefit from short holding periods to re
duce the risk of being invested during stock crashes. Therefore, we limit
the holding period to a maximum of two days (in Section 3, the decision
algorithm is free to select one or two days). A reason for this is that the
studies ofLakonishok et al. do not considerthe developments of fast and
volatile computer trading as a source of risk. In addition, Lucca et al.
have shown that the main effect is only significant during a few hours
before the FOMC-statement.

The comparison between a holding period of one or two days shows
that the cumulative returns (at each event go long at close price and quit
at close price on the first/second trading day after the event) are larger
for a holding period of two days. For the DAX, the cumulative return of
this strategy (13 years) is 75.98% (one day) or 106.64% (two days). For
the S&P 500 62.42% (one day) or 63.11% (two days).ln the following the
unfiltered strategy is defined as a static strategy with two days holding
period.

Moreover, we examined whether performance differences exist in
certain months over the 13 years to see if it makes sense to add the
month as a filter criterion. The result includes all events which are asso
ciated with their corresponding months (gains or losses are allocated to
the month that includes the beginning of the event). It turns out that
there are significant differences. Mainly at the beginning and at the
end ofthe year the performance ofthis simple strategy is already very
promising. Such a january effect was first described by Rozeff et al. in
1976 [27]. In the middle two quarters the strategy acts rather unprofit
ably. This "Sell-in-May" effect was recently investigated by Andrade
et al. [1]. In fact, for a high-performance filtering it makes sense to add
the month as a criterion. Nevertheless, the following chart (Fig. 1)
shows that it is almost impossible to find clear rules for certain months.

As we pursue such a naive strategy, a significance test of this method
seems useful to review the basic practicality of this approach. For this,
one needs a comparison variable to empirically distinguish the phe
nomenon from a pure coincidence. In our study, we assume that not
only on event days a trade is executed, but at every possible trading
day. The average profit of this calculation is used as a benchmark for
the actual event trades. With a simple one-sample t-test we check
whether the gains for each event are significantly different from this av
erage. The Tables 2-4 show the results. *, **and *** indicate statistical
significance at the 10%, 5%, and 1% levels, respectively.

Of course, it would be possible to filter the seasonalities manually
and eliminate unprofitable events with these testing results. However,
manual filtering also requires a continuous adaptation and verification.
A much more elegant solution would be if a self-learning and intelligent
algorithm could make these decisions by itself, a software which adapts
automatically to new situations without any human influence. The
research field of machine learning provides a large number of possible
approaches. Our algorithm is based on the ideas of reinforcement
learning.

22. Reinforcement learning

A man who has committed a mistake and doesn't correct it, is commit
ting another mistake.

Confucius

102 D. Eilers et aL I Decision Support Systems 64 (2014) 100-108

stateS

agent action A

reward R

Fig. 1. Aggregate profit in each month (2000-2012).

Historical and recent financial crises have shown all too often that an
attempt to press the financial markets into everlasting mathematical
formulas is not profitable in the long term. Therefore the question of al
ternative solutions which do not blindly follow the alleged regularities
arises. The aim must be to develop a dynamic system that adapts to
the environment in order to deal with the increasingly complex and
ever-changing modern financial markets. One approach is the tech
nique ofRL [31]. Inspired by the research field of robotics [21], where
RL is already successfully applied to the most complex problems in un
known environments, the concept seems suitable for a trading strategy
(Fig. 2).

It is interesting to see how RL has been used in previous studies. The
most commonly used algorithm in financial applications is recurrent re
inforcement learning (RRL), first described by Moody et al. [23]. The
idea is to maximize a utility function (average excess return in relation
to the volatility of the excess return, called Sharpe ratio), to learn auto
matically how to trade assets or manage a portfolio. This is made possi
ble by a neural network with the recent price developments and the
previous position as inputs. The output of the network is the position
to be taken at the current time. Depending on the implementation,
for example with a two-layer perceptron, long (output = 1), short
(output = - 1) or nothing (output = 0) are possible. Among others
Bertoluzzo et al. [5] show the promising performance of a reinforce
ment learning approach with a large-scale study on the major world in
dices. Other interesting results can be found in the study of Nevmyvaka
et al. [24] with high-frequency data for several NASDAQ stocks. A com
prehensive study on FX markets was published by Gold [11] . Here, neu
ral networks with a hidden layer were tested compared to two-layer
perceptrons. Another promising approach is the fully automated trad
ing system for FX markets by Dempster et al. [8], referred to as adaptive
reinforcement learning. Here, the RRL is embedded in a three-layer
structure. A risk management layer and a dynamic optimization layer
complement the well-known machine learning algorithm. The idea is
that a combination of different methods is more successful. As justifica
tion for the approach of reinforcement learning Dempster et al. [8]
called the inability of conventional trading systems to adapt to changing
market situations. This is exactly our motivation to develop a selflearn
ing trading system (Fig. 3).

To understand our approach, it is useful to look at the learning pro
cess of a human being. Human action is based on an analysis of the cur
rent environment and an impact assessment of a certain behavior. For
successful learning, the feedback that is related to a previous action in

Table2
Exchange holidays.

S&P 500 Dax

Event Profit p-Value Event Profit p-Value

M.L.Kday - 0.0120 0.3564 Easter 0.1222 0.0342**
G.W.day - 0.0620 0.1943 Labor day - 0.0330 0.2698
Good Friday 0.0399 0.2691 Christmas 0.0570 0.2104
Memorial day 0.0326 0.2943 New year 0.2336 0.0054***
Fourth of july 0.0091 0.4634
Labor day 0.0053 0.4796
Thanksgiving - 0.0540 0.2841
Christmas 0.0001 0.4762
New year 0.1586 0.0079***
Overall 0.1176 0.3085 Overall 0.3841 0.0043 ***

a given situation must be analyzed. Humans try to improve their behav
ior on the basis of feedback from the environment. The best way for a
human trader to learn something about the market is to analyze the
gains and losses. A strategy which is obviously unprofitable will be re
moved from the market by every rational person. Instead, a new ap
proach must be found and implemented. This in turn must be tested
for profitability and should be adapted or discarded. Compared to nor
mal everyday situations the feedback of this environment is very easy
to interpret. The greater the profit, the better was the decision given
the environmental characteristics. Here, the profit is the direct reward
for an executed trade. The procedure in this particular situation will
be linked with a positive experience and high profit, respectively. In
long-term this leads to a preference of possible alternatives with posi
tive linkages. In similar situations actions with bad experiences will be
avoided.

So, unlike normal RL applications which try to maximize a reward
function over time, we always want to maximize only the immediate re
ward for each individual order in this trading example. The reason for
this is that, compared to applications in robotics, an executed action
has no influence on future market conditions. You only need a method
to assign the best action to a specific situation. For that there must be
a certain scope in which an (artificial) agent can act more or less freely.
Here, the tradable products or potential levers etc. are defined. At the
beginning the agent starts with no prior knowledge and randomly
selects a combination of parameters within the room of maneuver, to
test it in the market. The gain or loss is now associated with the state
action pair (SAP). In our case, the SAP consists of the current market sit
uation (state) and the order parameters (action). The conditions in the
market are described by various indicators or historical price data. Be
cause of that, an infinite number of states are possible. Hence, the link
between the SAP (input) on the one hand and the gain/ loss (output)
on the other hand, must be made via an ANN using just a simple three
layer feedforward network (subsection 2.3). This allows us to estimate
the possible profit with nonlinear function approximation. After the
first randomly executed trade the network must be trained with this
first set of training data. The nexttrade will no longer be selected at ran
dom, but the ANN will question what kind of action for a given market
situation provides the best output. All possible alternatives will be ap
plied to the input neurons and the resulting outputs will be compared.

Table3
Turn-of-the-month.

S&P 500

Event Profit

jan 0.0390
Feb - 0.0263
Mar 0.1147
Apr 0.1044
May 0.0381
june - 0.0326
july - 0.0467
Aug - 0.0300
Sept - 0.0202
Oct 0.0714
Nov 0.0095
Dec 0.1586
Overall 0.3798

Dax

p-Value Profit p-Value

0.2588 0.0555 0.2937
0.3611 0.0248 0.4158
0.1060 0.2000 0.0662*
0.0246** - 0.0121 0.4060
0.3173 0.0058 0.4947
0.2973 - 0.0433 0.2409
0.2515 - 0.1493 0.0389
0.3276 - 0.0270 0.3947
0.3757 0.0090 0.4831
0.1417 0.1226 0.1144
0.4643 0.0904 0.1123
0.0079*** 0.2336 0.0054***
0.0713* 0.5098 0.0786*

D. Eilers etaL I Dedsion Support Systems 64 (2014) 100-108 103

Table4
FOMC and a combination of all.

S&P 500 Dax

Event Profit p-Value Profit p-Value

FOMC 0.2815 0.0593* 0.3135 0.0639*
Combination 0.6311 0.0465** 1.0664 0.0060***

The alternative with the largest projected gain will be chosen and car
ried out in the market. This would result in an additional gain/ loss
which is also associated with the SAP within a new set of training
data. This procedure is repeated continuously, so that the ANN gets
more and more experience. From time to time, not the alternative
with the largest output, but again random parameters are chosen. This
is the exploration to test new and potentially more profitable ap
proaches (avoiding a local-minimum-problem). Over time this gives
rise to a self-learning, fully automatic, flexible trading system.

How can the idea ofRL be formally described? First, these are justthe
basics for a general application ofRL before we consider the special case
of a trading system with all adjustments. In general, the task of an arti
ficial agent is to perform an action (at) in a certain state (st) in order to
move to a new state (st + 1).

(1)

For this, a transition function 8 is used:

(2)

Furthermore, the reward must be included in the model. For this
purpose one uses a function that is determined by the state and the
selected action:

(3)

This function calculates the immediate reward for an action in a
numeric value. The following applies:

rt>O: positive reward (4)

rt = 0: no reward (5)

rt<O: negative reward. (6)

training process

state action

input QQ
hidden

output

profit I reward

The goal should be to find a policy that maximizes the long term re
ward by projecting an action to each state. This relationship represents
the learning task of RL, which is the core of the problem.

policyn : 5-->A. (7)

This modeling results in a maximization problem. If you want to find
the best policy, the weighted sum of the single rewards of a policy must
be maximal. A discount factory is used to weight future rewards and to
ensure that the sum converges. The sum converges under the condition
that r is limited (lrl ~a constant B where B < co) and 0 < y < 1. A policy n*
is optimal if the following applies to all states:

(8)

The value function:

(9)

Convergence:

(10)

Furthermore, we assume that the problem is a Markov decision pro
cess. This means that the reward of an executed action depends only on
the current state and the executed action. It doesn't matter how this sit
uation has come about. To optimize the infinite reward under the as
sumption of a Markov decision process, algorithms can be used, which
will not be explained in detail here. In the literature there are good anal
yses of dynamic programming by Bellman (1957). Here, only the basic
idea of the RL should be illustrated formally in order to lay the foundation
for our strategy. In the following, we can make significant simplifications
of the standard model, if we transfer the technology to a trading software.

What is the difference between our method and the situation de
scribed above? We have seen that the goal of RL is to optimize long
term reward. However, in trading we want to maximize the profit of
each order, i.e. only the immediate reward must be considered. Thus,
we avoid the typical credit assignment problem. This occurs, for exam
ple if a robot must execute many steps which provide almost no imme
diate reward, but which are essential for the cumulative reward. This
leads to the question which of the actions were critical to the eventual
reward. Avoiding this problem is a significant simplification. It is also

decision support

state action

forecast profit I reward

Fig. 2. Idea of reinforcement learning.

104 D. Eilers et aL I Decision Support Systems 64 (2014) 100-108

MLP Neuron

Fig. 3. The multilayer perceptron (MLP).

clear that we cannot influence the next state with our trade, because of
the assumption that the trade has no effect on a competitive market sit
uation (state). What remains is a simple function:

(11)

It remains only the core idea of RL to map a specific action to each
state. In our case only the immediate reward is maximized. While the
states already (following specification in Section 3, Trading System) de
fined as the market situation, the action is a combination of different
order parameters. An optimal policy for our purposes looks like this.

(12)

I.e. an optimal (one-step) policy in a particular state is the argu
ment which maximizes a reward function that depends on the
state and the action, while the state is fixed and the action is opti
mized. Since we are dealing with financial markets with infinite
state spaces, we use an artificial neural network in our simulation
that allows to approximate the optimal policy n* in a particular mar
ket situation.

2.3. Neural networks

Prediction is very difficult, especially if it's about the future.
Niels Bohr

ANNs have been used for many years in the financial world to fore
cast time series of stock prices [17,18]. Schocken et al. analyze their use
in the context of decision support [28]. They say that in contrast to tra
ditional DSS resources ANNs are robust against low structurability and
noisy or missing data. Hence, ANNs are well suited for implementing
our idea. A detailed explanation of this large area of ANN can be read
in standard works such as [6] . Zhang et al. [36] (generally) and Li et al.
[19] (finance) give also good overviews of the state of the art. Some in
teresting studies with advanced methods of forecasting using neural
networks in the field of financial timeseries are provided by Sermpinis
et al. [29] (e.g. Psi Sigma Neural Networks) and von Mettenheim et al.
[35] (shared layer perceptrons).

This subsection briefly describes simple feedforward networks
and their use in our application. Multilayer perceptrons (MLP) can
be viewed in two ways. Like a decision tree, through which you can
link data (input/output), or as a method for nonlinear function
approximation.

In a neuron, we use the sigmoid function:

1
f (x) = 1 + e-x . (13)

With this example of function approximation, our approach can be
illustrated. Our goal is to find an action, for a given state, which promises
the maximum reward. This reward is a mathematical function that
depends on a state vector and an action vector as described in
subsection 2.2. To perform a function approximation, state and action
as independent variables must be included in the input of the ANN.
The dependent variable is the reward. If you train the network with
enough samples, this produces an approximation of the reward func
tion. Since there are theoretically an infinite number of states in the
financial markets, the generalization of ANN approximation is well
suited for our purposes. One can achieve already good approximations
of unknown patterns with a manageable number of training patterns.
Fig. 4 shows the structure of such an ANN.

The input layer consists of the vector of states and actions, which
should be linked to the reward/output. Every input neuron is connected
to each hidden neuron (in our case three neurons) via respective
weights (w). Each hidden neuron is linked to the output neuron. The
forecast of the ANN is the expected profit for a given SAP. To train the
ANN the mean square error of the prediction compared to the actual
profit has to be minimized over all training patterns. This is done by
adjusting the weights between the neurons. In our example, we use a
simple backpropagation algorithm. For this, the input is applied to the
neurons and passed through the ANN according to the weights of the
network. At the beginning the weights are chosen randomly. The differ
ence between the output and the actual value is the error of the ANN.
The error is then propagated backwards through the ANN from the out
put to the input. The weights are adjusted depending on their influence
on the error. The exact description is beyond the scope of this paper and
can be studied in standard works as mentioned before. A formal de
scription of the training:

(14)

t.wij the change of the weight
1J the learning rate which determines the amount of the weight

changes
E error function

Setting the learning rate is an important part of the learning process.
It consists a trade-off between accuracy and speed. A high learning rate
leads to larger changes, but some matching local minima may be
missed. A low learning rate increases the accuracy, but slows down
the learning process. We use a standard learning rate of 0.05 with
good results. Furthermore, the question of the number of iterations in
the learning process arises. Too many iterations lead to overfitting.
Too many iterations worsen the approximation. Due to the structure

D. Eilers etaL I Dedsion Support Systems 64 (2014) 100-108 105

-- -position: long nothing short

----------- -----------.
holding period: one day

...............
lever: one two

two days
~

one two

one day
...............

one two

two days
~

one two

Fig. 4. Use of the multilayer perceptron in decision support.

of our model, we use an unconventional method for the determination
of iterations. At each decision the number of iterations depends on the
number of records already stored during training. Good approximations
can be achieved by multiplying the number of stored experiences by the
factor of ten. At 100 data sets this results in 1000 iterations for the learn
ing process before the decision process.

Although one can develop their own ANN s using e.g. Matlab dedicat
ed libraries, it is not recommended to implement these algorithms by
yourself. Some suggestions for powerful software packages:

• The Neurosimulator FAUN developed by Breitner et al. [32,33] , with
the possibility of multi-core computing for large networks.

• The WEKA (Waikato Environment for Knowledge Analysis) open
source library for java, which includes many other machine learning
algorithms alongside ANN.

• MemBrain [15] (version 05.00.03.00) which brings the possibility of a
GUI for graphical modeling even complex ANN.

After training, the decision is made by applying all possible action
combinations to the action neurons (while the state remains the same)
and the expected profits are compared. The action which results in the
highest anticipated output for a given state is carried out on the market.
The result of this action is saved after closing the trade as a new data
set and is part of the training process in the next round. Exceptions to
this procedure exist only because of the exploration, when the action is
chosen randomly from time to time in order to avoid a local minimum
problem and explore possibly better strategies. The configuration of the
exploration will be discussed in Section 4 on the basis of the results,
and can be traced in the pseudocode Appendix A Section 3 now describes
the components of the ANN for an automated trading system.

3. Trading system

The basic idea is to use the detectable seasonalities and empirical
regularities for an automated trading system. But the question is how

1,8

1,7

1,6

this assumption of rising prices after a trade event can be transformed
into a profitable behavior. Our research shows that it is difficult to de
velop firm rules. Obeying fixed rules may lead to large drawdowns. De
pending on market conditions, e.g. a different leverage or a customized
holding period could be useful. Inactivity or even betting on a price de
cline can protect against major drawdowns, too. Therefore, we tried to
find a dynamic strategy with RL that can adapt automatically to changes
in the market situation. As described in the subsection 2.2 about RL, we
defined a room of maneuver from which the agent can autonomously
choose the best settings for the trade execution. In our example, the
agent can decide between long, short, and no trade. Longs and shorts
can be combined with a leverage [one, two] and a holding period [one
day, two days]. This leads to the parameter combinations in Fig. 5.

For a good decision, the agent has to be aware of the state of the en
vironment and the market situation. We use eleven values to describe
the market as effectively as possible. Three neurons for the actions
and one neuron for the output complete the ANN, which is the core of
the agent. Table 5 shows the corresponding layout.

First, three trade events are distinguished. The turn-of-the month,
exchange holidays and the pre-FOMC announcement drift. Further
more, the current OHLC values of the day, as well as the close-data of
the past three trading days are added. As we trade at the close, OHLC
data for the present day is available. A simple moving average (5,
close) and a relative strength index (6, close) as well as the number
for the current month round off the state description. This specific con
dition, together with the action, are the input of an ANN. This results in
14 input neurons. As feedback, this input data set is associated with the
profit (output). To find a profitable strategy, traded combinations will
be associated with the resulting profit and stored in training datasets
(experience).

A suitable selection of the inputs of an ANN is a critical point. The
investigations of Martinez et al. [22] show that an extension of the in
puts does not necessarily lead to better results. In their study, the best
results were achieved with 15 inputs. More inputs worsened the reward

....... ··
<lJ 1,5 u
c
"'

.. ····························...... ·
·············. ···· ·

....J
c:r::
c

§ 1,4 ..
.g 1,3

<lJ 1,2 ---a.

1,1

0,9

3

· 0 .g
"iii
0
a.

-1

7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

trades

--- static •••••• RL --position RL

Fig. 5. Order options for the agent.

106 D. Eilers et aLI Decision Support Systems 64 (2014) 100-108

TableS
ANN layout

State

Action

Output

Description

Event: turn-of-the month, FOMC or exchange holidays
OHLC of the present day
Close-values from the past three days
SMA of the last five close-values
RSI of the last six close-values
The number for the current month
Position
Holding period
Leverage
Immediate reward (the profit of each order)

Neurons

4

to risk ratios. In our simulations we adhere to this specification (14
inputs including action variables). In the literature it is common to
add the OHLC values to the models, which has proven itself in various
studies [34,37] . According to our model it is necessary to use the type
of the event and the current month as inputs. The close values of the
last three days describe the short-term development at the exit points
of the strategy. In order to include technical analysis aspects we have
chosen a trend follower and an oscillator (see an example of a similar
composition by Gunasekaran et al. [12]) . The settings of the technical in
dicators are the result of a trial and error preselection process based on
the DAX values. The decisive factor for the selection is the ability of the
agent to find a policy as fast and reliable as possible. Because of the ran
dom exploration every simulation run is different, despite the same in
puts. Therefore, we define the robustness of an agent according to its
ability to achieve at least the return of the unfiltered strategy in several
simulation runs. The agent with the presented inputs reached a higher
return than the unfiltered version in 9 out of 10 simulation runs. The re
sults are presented in Section 4 on the basis of best, average and worst
case scenarios. All other input variants of the agent reached less than
9 out of 10 reliable runs. The tested variants include the adjustments
ofthe SMA by 5 up to 50 included periods (in steps of five units) and
the RSI by 4 up to 14 periods (in steps of two units). Variants with a sto
chastic oscillator, instead of the RSI, had no effect in decision making.

In the presented variant, the time required for a simulation run over
13 years is about 10 min with an eight-core CPU. This depends essen
tially on the number of iterations in the training process. The type of
the implementation (standard packages, learning algorithms, learning
rate) is also a critical time factor. It should be noted, that the training
can be carried out directly after the end of an event trade, so this will
have no adverse effects in practice. The decision process of an agent is
made in a split second, so a decision can be executed on the market
without significant time delay.

Our aim in this paper is to provide instructions for building a self
learning trading system. So far, the ideas and basic structures were ex
plained. A detailed guide for reverse engineering of the algorithm pro
vides the truncated pseudocode in Appendix A This makes it possible
to implement the algorithm step by step in your own applications or
projects.

4. Results and discussion

The results of the RL strategy were generated by using a self
developed simulation program. The software written in java mimics a
market with real prices of the past (2000-2012) and is also able to cre
ate and train neural networks. Thus the agent can be tested realistically
over several years and with different parameters (e.g. with different
probabilities for exploration). For a detailed analysis learning logs
were stored, which give information on how the agent works. The
benchmark is a static strategy (static) that buys one day before an
event at the close price and sells two days later at close price.

The following diagram (Fig. 6) provides a graphical illustration of the
operation of an artificial agent.

0,4

0,3

....
<+=
0 0,1 c.

-0,1

-0,2

\'?>~ «.~ ~~ '~?'-~<.. ~'?>.::., \'>~q, ,~.::.. 'l?'-'>¢o r.,q,~'- 0<:;- ~o.:;. <Vq,c.

• S&P 500 D DAX

Fig. 6. Comparison of Strategies from 10-31-2000 to 04-17-2003.

You can see a detailed performance history of the strategy for the
DAX. The excerpt covers the period from 10-31-2000 to 04-17-2003
(35 trades), thus including one of the largest stock crashes in recent his
tory. In this time span, the index fell by 59%. The unfiltered strategy of
seasonalities could limit the decline to 6.6%. The variant filtered with
RL even achieved a rise of 21.9%. As seen in the graph, the agent adapts
very quickly to the new situation and bets against the market for a cer
tain time. The solid line shows in which direction the agent acts. 1 is a
long position, a short position is a - 1 and 0 means no trade. After the
situation had reassured, the agent switched back to a long strategy. At
the beginning of this extract, the agent had only learnt and traded the
patterns from 01-01-2000 to 10-31-2000.

After this example we show a performance analysis of the entire
13 years. As described in Section 3, the agent has the possibility to
choose between nine parameter combinations. Because of the explora
tion (at random times during the training process, the agent does not
perform the action with the highest predicted reward), the results of
each simulation run are different. Therefore, it makes sense to distin
guish between best, worst and average cases. The case distinction is
based on the realized returns. The average case is the median of the
simulation runs.

Table 6 shows the performance differences of the two strategies for
the DAX with a total of 243 trading events. The statement shows the
total profit/loss over 13 years (return) and the annualized return, re
spectively. You can also see the maximum drawdown of each simula
tion run.

Here, for comparison, a buy-and-hold strategy (b&h) for this period
is specified. This clearly shows the superiority of the seasonality strate
gy, which significantly reduces the risk of great crashes due to the few
but effective trades.

As mentioned in Section 3, the rate of exploration in RL can be
changed easily. For our results, we have used a simple random function.
The program generates a random integer between 0 and the number of
training runs. If this random number is less than a defined threshold, the
order options are set randomly (exploration). Otherwise, the parame
ters are set by the agent. This is called exploitation, because the

Table6
DAX and benchmark (values in percent).

b&h Static Best Average Worst

Return 9.35 106.64 232.83 173.14 -33.92
Ann. ret. 0.69 5.74 9.69 8.04 -3.14
Max.dd. 72.68 22.35 14.50 14.32 61.94

D. Eilers etaL I Dedsion Support Systems 64 (2014) 100-108 107

Table7
S&P 500 and benchmark (values in percent).

b&h Static Best Average Worst

Return - 4.55 63.11 133.99 80.78 - 4.80
Ann. ret. - 0.36 3.84 6.76 4.66 - 0.38
Max.dd. 56.78 14.93 9.52 16.00 30.93

parameters with the highest projected output will be chosen. This ap
proach means that as long as the number of training runs is smaller than
the defined limit, only exploration is performed. If the limit is reached,
the probability of exploitation increases with each new training run.

If the share of exploration is set very low, relative to the total running
time, it may happen in exceptional cases, that the agent does not find a
proper policy. This can lead to unpredictable losses in the worst case.
This can be prevented by a high rate of exploration (a great threshold)
at the beginning. Nevertheless, our investigations have shown that it
is useful to start with 100% of exploration but only for the first three
or four training runs so that the probability decreases rapidly. An opti
mization of the RL parameters is left open for future research.

Table 7 shows the performance difference for the S&P 500 from 2000
to 2012 with a total of 314 trading events.

It is obvious that the results are worse in the average case, compared
to the DAX. This could be due to the fact that the basic strategy already
works less well. Nevertheless, in the best case, a marked improvement
of the reward to risk ratios was achieved. So it is not impossible to
find a well acting agent for the S&P 500, but one can see how important
a properly working basic strategy for RL is. The results show that a sig
nificant performance improvement is possible. A greater profit and a
smaller maximum drawdown can be achieved by filtering with RL, so
the reward to risk ratios becomes more attractive.

5. Conclusion, limitations, and future research

In this paper three major research fields are combined in an intelli
gent, self-learning and fully automated trading system. The basis is the
promising strategy of seasonalities and empirical regularities in finan
cial markets which has been described and discussed in the literature
for three decades. For the period from 2000 to 2012, the significance
of upward biases at the turn-of-the-month, during exchange holidays
and the pre-FOMC announcement drift could be confirmed in many
cases. Based on this study, a self-learning decision support algorithm
was developed which filters this strategy by using reinforcement learn
ing and artificial neural networks, in order to achieve even better re
sults. The software is able to act autonomously as an artificial agent on
the financial markets.

Despite the performance of our artificial agents, there is much room
for improvement. We have shown that a small number of possible order
options for the agent are sufficient to achieve a significant improvement
of the reward to risk ratios. An expansion of the possible options might
improve the outcome. For example, the freedom of action could be ex
panded to the product choice, so that the best stock index is automati
cally selected. A significantly greater exploration will then become
necessary. To realize this, other strategies could be used, which have a
higher trading frequency. This would accumulate more experience in
a shorter time, which leads to a faster adjustment. A study in the high
frequency area might produce interesting results. But this necessitates
tick-data, which leads to a much larger simulation effort. Nevertheless,
further optimization problems remain which are discussed in the liter
ature for many years.

• What ratio between exploration and exploitation is optimal? [23,31]
• Which inputs are best to describe the current state of the market? [12,

17,37]
• How should the ANN be configured? [18,28,32]
• Should oldertrainingpatterns be replaced after a certain time? [11,34]

• How much patterns are necessary to reduce the risk of underfitting
and overfitting respectively? [4,6]

Consideration should be given whether agents with different experi
ence can be used simultaneously. Agents act very differently in similar
situations. It seems sensible to use several agents for a decision process
to make the system more robust. A majority decision may improve the
behavior.

Another idea concerns the determination of the leverage. In our ex
ample, it is chosen as a discrete action (one or two) by the agent. You
might consider using the projected profit of the ANN to set a continuous
leverage, i.e. the higher the predicted profit, the higher the leverage for
this trade. These are optimization problems with a large room for
improvement by future research.

It would also be interesting to test the predictive power of the algo
rithm in forecasts of the direction of change in financial time series and
beyond [26].

Acknowledgment

We would like to thank the anonymous reviewers for their interest
ing and valuable comments to improve the quality of this paper.

Appendix A

Listing 1: Self-Learning Trading System

' //Definition

' double state [11] ; int acti on [3] ; double output ;

, double ann [1 5] [#]; //#training data sets for ANN

• //Settings

s Create a feed - forward network:

s 14 inputs, 1 output, # hi dden layer;

1 Randomize n eural network;

s //Event loop

'if (date is equa l trade event){

//set state

state [0 to 10] = [EvenLnumerical , open, high , low ,

c l ose_c urr ent, c lose(t - 1), close(t - 2), close(t - 3) ,

SMA{5, close), RSI{6, close), month_numer ical] ;

//exploration or exploitation

if (random integer between 0 and# training data sets

< defined t hr es h o ld){

act io n [0] = random (pos i tion_numerica l);

act io n [1] = random (h o ldin g period);

action [2] = random(lever); }

e lse {

put state[] at ANN-In put;

for (queries < # possib l e combinations){

put action[#,#,#] at ANN-In put;

ANN perform think step;

save act ion with the greatest ou tp u t;}}

//trade

perform trade with the stored action;

ann [] [#] = state [] , action [] , profit;

ANN t r a inin g wit h a nn [] [] ;}

'" else {perform no act ion ;}

108 D. Eilers et aL I Decision Support Systems 64 (2014) 100-108

References

[1] Sandra C. Andrade, Vidhi Chhaochharia, Michael E. Fuerst, Sell in May and go away
just won't go away, Financial Analysts journal 69.4 (July/August 2013) 94-105.

(2] Robert A. Ariel, A monthly effect in stock returns, journal of Financial Economics
(March 1987) 161-174.

(3] Christina V. Atanasova, RobertS. Hudson, Technical trading rules and calendar
anomalies- are they the same phenomena? Economics Letters 106 (February
2010) 128-130.

(4] Eric B. Baum, David Haussler, What size net gives valid generalization? Neural
Computation 1 (Spring 1989) 151-160.

(5] Francesco Bertoluzzo, Marco Corazza, Making financial trading by recurrent
reinforcement learning, Knowledge-Based Intelligent Information and Engineering
Systems, September 12-14 2007.619-626.

(6] Christopher M. Bishop, Neural Networks for Pattern Recognition, Oxford University
Press, 1995.

[7] Charles Bram Cadsby, Mitchell Ratner, Turn-of-month and pre-holiday effects on
stock returns: some international evidence, journal of Banking & Finance (June
1992) 497-509.

(8] M.A.H. Dempster, V. Leemans, An automated FX trading system using adaptive
reinforcement learning, Expert Systems with Applications 30 (3) (April 2006)
543-552.

(9] Amy Dickinson, David R. Peterson, Expectations of weekend and tum-of-the-month
mean return shifts implicit in index call option prices, journal Of Financial And
Strategic Decisions 8.3 (1995) 69-76.

(10] Kenneth R. French, Stock returns and the weekend effect, journal of Financial
Economics (March 1980) 55-69.

[11] Carl Gold, FX trading via recurrent reinforcement learning, Proceedings of the 2003
IEEE International Conference on Computational intelligence for Financial Engineering,
March 20-23 2003, pp. 363-370.

[12] M. Gunasekaran, S. Anitha, S. Kavipriya, Neuro fuzzy based stock market prediction
system, Second National Conference on Signal Processing, Communications and
VIS! Design- NCSCV10 ANNA UNIVERSllY COIMBATORE, May 2010, pp. 354-359.

(13] Peter Reinhard Hansen, Asger Lunde, james M. Nason, Testing the Significance of
Calendar Effects, Federal Reserve Bank, Atlanta, january 2005.

(14] jeffrey Jaffe, Randolph Westerfield, Is there a monthly effect in stock market
returns?: evidence from foreign countries, journal of Banking & Finance (May 1989)
237-244.

(15] Thomasjetter, MemBrain, (Website) http: //www.membrain-nn.de/ (visited on
August 25th 2013; version 05.00.03.00; DU version 04.00.01.00).

(16] josef Lakonishok, Seymour Smidt, Are seasonal anomalies real? A ninety-year
perspective, The Review of Financial Studies (Winter 1988) 403-425.

(17] Monica Lam, Neural network techniques for financial performance prediction:
integrating fundamental and technical analysis, Decision Support Systems
(September 2004) 567-581.

(18] William Leigh, Russell Purvis, james M. Ragusa, Forecasting the NYSE composite
index with technical analysis, pattern recognizer, neural network, and genetic
algorithm: a case study in romantic decision support, Decision Support Systems
(March 2002) 361-377.

(19] Yuhong Li, Weihua Ma, Applications of Artificial Neural Networks in Financial
Economics: A Survey, International Symposium on Computational intelligence and
Design (ISCID), 1, October 2010, pp. 211-214.

(20] Staff Report, Federal Reserve Bank of New York, No. 512 (2011), journal of Finance
(2014) (forthcoming).

(21] Sridhar Mahadevan, jonathan Connell, Automatic programming of behavior-based
robots using reinforcement learning, Artificial Intelligence (June 1992) 311-365.

(22] Leonardo C. Martinez, Diego N. da Hora, joao R. de M. Palotti, Wagner Meira jr.,
Gisele L. Pappa, From an artificial neural network to a stock market day-trading sys
tem: a case study on the BM&F BOVESPA, Proceedings of International joint
Conference on Neural Networks, Atlanta, Georgia, USA, june 2009, pp. 2006-2013.

(23] john Moody, Matthew Saffell, Learning to trade via direct reinforcement, IEEE
Transactions on Neural Networks 12 (4) (July 2001) 875-889.

(24] Yuriy Nevmyvaka, Yi Feng, Michael Kearns, Reinforcement learning for optimized
trade execution, Proceedings of the 23rd International Conference on Machine
Learning (ICML 2006), 2006, pp. 673-680.

(25] joseph P. Ogden, Turn-of-month evaluations of liquid profits and stock returns: a
common explanation for the monthly and january effects, The journal of Finance
45 (September 1990) 1259-1272.

(26] M. Hashem Pesaran, Allan Timmermann, A simple non parametric test of predictive
performance, journal of Business & Economic Statistics (October 1992) 461-465.

(27] MichaelS. Rozeff, William R. Kinney Jr., Capital market seasonality: the case of stock
returns, journal of Financial Economics (October 1976) 379-402.

(28] Shimon Schocken, Gad Ariav, Neural networks for decision support: problems and
opportunities, Decision Support Systems (June 1994) 393-414.

(29] Georgios Sermpinis, Christian Dun is, jason Laws, Charalampos Stasinakis, Forecasting
and trading the EUR/USD exchange rate with stochastic Neural Network combination
and time-varying leverage, Decision Support Systems (December 2012) 316-329.

(30] Ryan Sullivan, Allan Timmermann, Halbert White, Dangers of data mining: the case
of calendar effects in stock returns, journal of Econometrics (November 2001)
249-286.

(31] RichardS. Sutton, Andrew G. Barto, Reinforcement Learning: An Introduction, The
MIT Press, 1998.

(32] Hans-jiirg von Mettenheim, Advanced Neural Networks: Finance, Forecast, and
Other Applications, Leibniz Universitat Hannover, Germany, 2010.

(33] Hans-jiirg von Mettenheim, Michael H. Breitner, Robust decision support systems
with matrix forecasts and shared layer perceptrons for finance and other applications,
!CIS 2010 Proceedings, 2010, p. 83.

(34] Hans-jiirg von Mettenheim, Michael H. Breitner, Forecasting and trading the high
low range of stocks and ETFs with Neural Networks, Engineering Applications of
Neural Networks 311 (2012) 423-432.

(35] Hans-jiirg von Mettenheim, Michael H. Breitner, Robust forecasts with shared layer
perceptrons, Proceedings of the 17th International Conference on Forecasting
Financial Markets, May 26-28 2010.

(36] Guoqiang Zhang, B. Eddy Patuwo, Michael Y. Hu, Forecasting with artificial neural
networks: the state of the art, International journal of Forecasting (March 1998)
35-62.

(37] Y.-Q, Zhang, S. Akkaladevi, G. Vachtsevanos, T.Y. Lin, Granular neural web agents for
stock prediction, Soft Computing (August 2002) 406-413.

Dennis Eilers is a Bachelor Student at Leibniz University of Hanover, Germany. His
research interests include machine learning algorithms for intelligent trading strategies.

Christian Dunis is an emeritus professor of Banking and Finance from Liverpool john
Moores University. He currently works as Risk Manager at a Swiss private bank. His
research interests include quantitative trading strategies and artificial intelligence.

Hans-jorgvon Mettenheim is a professor for Decision Support Systems at Leibniz Univer
sity of Hanover, Germany. His research interests include complex systems and forecasting.

Michael H. Breitner is a professor for Information Systems Research at Leibniz University
of Hanover, Germany. His research interests include artificial intelligence, especially artifi
cial neural networks.

