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Abstract

We propose a simple analytical framework to measure the value added or subtracted by stop-
loss rules—predetermined policies that reduce a portfolio’s exposure after reaching a certain
threshold of cumulative losses—on the expected return and volatility of an arbitrary port-
folio strategy. Using daily futures price data, we provide an empirical analysis of stop-loss
policies applied to a buy-and-hold strategy using index futures contracts. At longer sam-
pling frequencies, certain stop-loss policies can increase expected return while substantially
reducing volatility, consistent with their objectives in practical applications.
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1. Introduction

Thanks to the overwhelming dominance of the mean-variance portfolio optimization

framework pioneered by Markowitz (1952), Tobin (1958), Sharpe (1964), and Lintner (1965),

much of the investments literature—both in academia and in industry—has focused on con-

structing well-diversified static portfolios using low-cost index funds. With little use for

active trading or frequent rebalancing, this passive perspective comes from the recognition

that individual equity returns are difficult to forecast and trading is not costless. The ques-

tionable benefits of day-trading are unlikely to outweigh the very real costs of changing

one’s portfolio weights. It is, therefore, no surprise that a “buy-and-hold” philosophy has

permeated the mutual-fund industry and the financial planning profession.3

However, this passive approach to investing is often contradicted by human behavior,

especially during periods of market turmoil.4 behavioral biases sometimes lead investors

astray, causing them to shift their portfolio weights in response to significant swings in

market indexes, often “selling at the low” and “buying at the high.” On the other hand,

some of the most seasoned investment professionals routinely make use of systematic rules

for exiting and re-entering portfolio strategies based on cumulative losses, gains, and other

“technical” indicators.

In this paper, we investigate the efficacy of such behavior in the narrow context of stop-

3This philosophy has changed slightly with the recent innovation of a slowly varying asset allocation that
changes according to one’s age (e.g., a “lifecycle” fund).

4For example, psychologists and behavioral economists have documented the following systematic biases
in the human decisionmaking process: overconfidence (Fischoff and Slovic, 1980; Barber and Odean, 2001;
Gervais and Odean, 2001), overreaction (DeBondt and Thaler, 1986), loss aversion (Kahneman and Tver-
sky, 1979; Shefrin and Statman, 1985; Kahneman and Tversky, 1992; Odean, 1998), herding (Huberman
and Regev, 2001), psychological accounting (Kahneman and Tversky, 1981), miscalibration of probabilities
(Lichtenstein, Fischoff, and Phillips, 1982), hyperbolic discounting (Laibson, 1997), and regret (Bell, 1982a,b;
Clarke, Krase, and Statman, 1994).

2

gyantal
Highlight

gyantal
Highlight

gyantal
Highlight

gyantal
Highlight

gyantal
Highlight

gyantal
Highlight

gyantal
Highlight



loss rules (i.e., rules for exiting an investment after some threshold of loss is reached and

re-entered after some level of gains is achieved). We wish to identify the economic motivation

for stop-loss policies so as to distinguish between rational and behavioral explanations for

these rules. While certain market conditions may encourage irrational investor behavior

(e.g., large rapid market declines) stop-loss policies are sufficiently ubiquitous that their use

cannot always be irrational.

This raises the question we seek to answer in this paper: When do stop-loss rules stop

losses? In particular, because a stop-loss rule can be viewed as an overlay strategy for a

specific portfolio, we can derive the impact of that rule on the return characteristics of the

portfolio. The question of whether or not a stop-loss rule stops losses can then be answered

by comparing the expected return of the portfolio with and without the stop-loss rule. If the

expected return of the portfolio is higher with the stop-loss rule than without it, we conclude

that the stop-loss rule does, indeed, stop losses.

Using simple properties of conditional expectations, we are able to characterize the

marginal impact of stop-loss rules on any given portfolio’s expected return, which we define

as the “stopping premium.” We show that the stopping premium is inextricably linked to

the stochastic process driving the underlying portfolio’s return. If the portfolio follows a

random walk (i.e., independently and identically distributed returns) the stopping premium

is always negative. This may explain why the academic and industry literature has looked

askance at stop-loss policies to date. If returns are unforecastable, stop-loss rules simply

force the portfolio out of higher-yielding assets on occasion, thereby lowering the overall

expected return without adding any benefits. In such cases, stop-loss rules never stop losses.
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However, for non-random-walk portfolios, we find that stop-loss rules can stop losses. For

example, if portfolio returns are characterized by “momentum” or positive serial correlation,

we show that the stopping premium can be positive and is directly proportional to the

magnitude of return persistence. Not surprisingly, if conditioning on past cumulative returns

changes the conditional distribution of a portfolio’s return, it should be possible to find a

stop-loss policy that yields a positive stopping premium. We provide specific guidelines for

finding such policies under several return specifications: mean reversion, momentum, and

Markov regime-switching processes. In each case, we are able to derive explicit conditions

for stop-loss rules to stop losses.

Of course, focusing on expected returns does not account for risk in any way. It may

be the case that a stop-loss rule increases the expected return but also increases the risk

of the underlying portfolio, yielding ambiguous implications for the risk-adjusted return of

a portfolio with a stop-loss rule. To address this issue, we compare the variance of the

portfolio with and without the stop-loss rule and find that, in cases where the stop-loss rule

involves switching to a lower-volatility asset when the stop-loss threshold is reached, the

unconditional variance of the portfolio return is reduced by the stop-loss rule. A decrease in

the variance coupled with the possibility of a positive stopping premium implies that, within

the traditional mean-variance framework, stop-loss rules may play an important role under

certain market conditions.

To illustrate the empirical relevance of our analysis, we apply a simple stop-loss rule to

a standard asset-allocation problem of stocks versus bonds using daily futures data from

January 1993 to November 2011. We find that stop-loss rules exhibit positive stopping
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premiums over longer sampling frequencies over larger range of threshold values. These

policies also provide substantial reduction in volatility creating larger Sharpe ratios as a

result. This is a remarkable feat for a buy-high/sell-low strategy. For example in one

calibration, using stop loss over monthly intervals in daily data can increase the return by

1.5% and decrease the volatility by 5% causing an increase in the Sharpe Ratio by as much

as 20%. These results suggest that stop-loss rules may exploit conditional momentum effects

following periods of losses in equities. These results suggest that the random walk model is a

particularly poor approximation to U.S. stock returns and may improperly value the use of

non-linear policies such as stop-loss rules. This is consistent with Lo and MacKinlay (1999)

and others using various methods to examine limitations of the random walk.

2. Literature Review

Before presenting our framework for examining the performance impact of stop-loss rules,

we provide a brief review of the relevant portfolio-choice literature, and illustrate some of its

limitations to underscore the need for a different approach.

The standard approach to portfolio choice is to solve an optimization problem in a multi-

period setting, for which the solution is contingent on two important assumptions: the

choice of objective function and the specification of the underlying stochastic process for

asset returns. The problem was first posed by Samuelson (1969) in discrete time and Merton

(1969) in continuous time, and solved in both cases by stochastic dynamic programming.

As the asset-pricing literature has grown, this paradigm has been extended in a number of

important directions.5

5For a comprehensive summary of portfolio choice see Brandt (2004). Recent extensions include pre-
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However, in practice, household investment behavior seems to be at odds with finance

theory. In particular, Ameriks and Zeldes (2004) observe that most observed variation in an

individuals portfolio is attributed to a small number of significant decisions they make as

opposed to marginal adjustments over time. Moreover, other documented empirical charac-

teristics of investor behavior include non-participation (Calvet, Campbell, and Sodini 2006);

under-diversification (Calvet, Campbell, and Sodini 2006); limited monitoring frequency and

trading (Ameriks and Zeldes 2004); survival-based selling decisions or a “flight to safety”

(Agnew 2003); an absence of hedging strategies (Massa and Simonov, 2004); and concen-

tration in simple strategies through mutual-fund investments (Calvet, Campbell, and Sodini

2006). Variations in investment policies due to characteristics such as age, wealth, and

profession have been examined as well.6

In fact, in contrast to the over-trading phenomenon documented by Odean (1999) and

Barber and Odean (2000), Agnew (2003) asserts that individual investors actually trade

infrequently. By examining asset-class flows, she finds that investors often shift out of

equities after extremely negative asset returns into fixed-income products, and concludes

that in retirement accounts, investors are more prone to exhibit a “flight to safety” instead

of explicit return chasing. Given that one in three of the workers in the United States

participate in 401(k) programs, it is clear that this flight to safety could have a significant

dictability and autocorrelation in asset returns (Kim and Omberg, 1996; Liu, 1999; Campbell and Viceria,
1999; Brennan and Xia, 2001; Xia, 2001; and Wachter, 2002), model uncertainty (Barberis, 2000), transac-
tion costs (Balduzzi and Lynch, 1999), stochastic opportunity sets (Brennan, Schwartz, and Lagnado, 1997;
Campbell, Chan, and Viceria, 2003; and Brandt, Goyal, Santa-Clara, and Stroud, 2005), and behavioral
finance (see the references in footnote 4).

6For example, lack of age-dependence in allocation, lower wealth and lower education with greater non-
participation and under-diversification, and greater sophistication in higher wealth investors have all been
considered (see Ameriks and Zeldes, 2004).
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impact on market prices as well as demand. Consistent with Agnew’s flight-to-safety in

the empirical application of stop-loss, we find momentum in long-term bonds as a result of

sustained periods of loss in equities. This suggests conditional relationships between stocks

and bonds, an implication that is also confirmed by our empirical results.7

Although stop-loss rules are widely used, the corresponding academic literature is rather

limited. The market microstructure literature contains a number of studies about limit

orders and optimal order selection algorithms (Easley and O’Hara, 1991; Biais, Hillion,

and Spatt, 1995; Chakravarty and Holden, 1995; Handa and Schwartz, 1996; Harris and

Hasbrouck, 1996; Seppi, 1997; and Lo, MacKinlay, and Zhang, 2002). Carr and Jarrow

(1990) investigate the properties of a particular trading strategy that employs stop-loss

orders, and Shefrin and Statman (1985) and Tschoegl (1988) consider behavioral patterns

that may explain the popularity of stop-loss rules. However, to date, there has been no

systematic analysis of the impact of a stop-loss rule on an existing investment policy, an

oversight that we remedy in this paper.

3. A Framework for Analyzing Stop-Loss Rules

In this section, we outline a framework for measuring the impact of stop-loss policies on

investment performance. In Section 3.1, we begin by specifying a simple stop-loss policy

and deriving some basic statistics for its effect on an existing portfolio strategy. We describe

several generalizations and qualifications of our framework in Section 3.2, and then apply

our framework in Section 4 to various return-generating processes including the Random

7Although excess performance in long-term bonds may seem puzzling, from a historical perspective, the
deregulation of long-term government fixed-income products in the 1950s could provide motivation for the
existence of these effects.
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Walk Hypothesis, momentum and mean-reversion models, and regime-switching models.

3.1. Assumptions and definitions

Consider any arbitrary portfolio strategy P with returns {rt} that satisfy the following

assumptions:

(A1) The returns {rt} for the portfolio strategy P are stationary with finite mean µ and

variance σ2.

(A2) The expected return µ of P is greater than the risk-free rate rf , and let π ≡ µ − rf

denote the risk premium of P .

Our use of the term “portfolio strategy” in Assumption (A1) is meant to underscore the

possibility that P is a complex dynamic investment policy, not necessarily a static basket of

securities. Assumption (A2) simply rules out perverse cases where stop-loss rules add value

because the “safe” asset has a higher expected return than the original strategy itself.

Now suppose an investor seeks to impose a stop-loss policy on a portfolio strategy. This

typically involves tracking the cumulative return Rt(J) of the portfolio over a window of J

periods, where:8

Rt(J) ≡
J

∑

j=1

rt−j+1 (1)

and when the cumulative return crosses some lower boundary, reducing the investment in

P by switching into cash or some other safer asset. This heuristic approach motivates the

8For simplicity, we ignore compounding effects and define cumulative returns by summing simple returns rt
instead of multiplying (1+rt). For purposes of defining the trigger of our stop-loss policy, this approximation
does not have significant impact. However, we do take compounding into account when simulating the
investment returns of a portfolio with and without a stop-loss policy.
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following definition:

Definition 1. A simple stop-loss policy S(γ, δ, J) for a portfolio strategy P with returns

{rt} is a dynamic binary asset-allocation rule {st} between P and a risk-free asset F with

return rf , where st is the proportion of assets allocated to P , and:

st ≡















0 if Rt−1(J) < − γ and st−1 = 1 (exit)
1 if rt−1 ≥ δ and st−1 = 0 (re-enter)
1 if Rt−1(J) ≥ − γ and st−1 = 1 (stay in)
0 if rt−1 < δ and st−1 = 0 (stay out)

(2)

for γ≥0. Denote by rst the return of portfolio strategy S, which is the combinaton of portfolio

strategy P and the stop-loss policy S, hence:

rst ≡ strt + (1− st)rf . (3)

Definition 1 describes a 0/1 asset-allocation rule between P and the risk-free asset F , where

100% of the assets are withdrawn from P and invested in F as soon as the J-period cumula-

tive return Rt1(J) reaches some loss threshold γ at t1. The stop-loss rule stays in place until

some future date t2−1 > t1 when P realizes a return rt2−1 greater than δ, at which point

100% of the assets are transferred from F back to P at date t2. Therefore, the stop-loss pol-

icy S(γ, δ, J) is a function of three parameters: the loss threshold γ, the re-entry threshold

δ, and the cumulative-return window J . Of course, the performance of the stop-loss policy

also depends on the characteristics of F—lower risk-free rates imply a more significant drag

on performance during periods when the stop-loss policy is in effect.

Note that the specification of the loss and re-entry mechanisms are different; the exit

decision is a function of the cumulative return Rt−1(J), whereas the re-entry decision involves
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only the one-period Return, rt−1. This is intentional, and motivated by two behavioral

biases. The first is loss aversion and the disposition effect, in which an individual becomes

less risk-averse when facing mounting losses. The second is the “snake-bite” effect, in which

an individual is more reluctant to re-enter a portfolio after experiencing losses from that

strategy. The simple stop-loss policy in Definition 1 is meant to address both of these

behavioral biases in a systematic fashion.

To gauge the impact of the stop-loss policy S on performance, we define the following

metric:

Definition 2. The stopping premium ∆µ(S) of a stop-loss policy S is the expected return

difference between the stop-loss policy S and the portfolio strategy P :

∆µ ≡ E[rst]− E[rt] = po
(

rf − E[rt|st = 0]
)

, (4)

where po ≡ Prob(st = 0) (5)

and the stopping ratio is the ratio of the stopping premium to the probability of stopping

out:

∆µ

po
= rf − E[rt|st = 0] . (6)

Note that the difference of the expected returns of rst and rt reduces to the product of the

probability of a stop-loss po and the conditional expectation of the difference between rf and

rt, conditioned on being stopped out. The intuition for this expression is straightforward:

the only times rst and rt differ are during periods when the stop-loss policy has been trig-
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gered. Therefore, the difference in expected return should be given by the difference in the

conditional expectation of the portfolio with and without the stop-loss policy—conditioned

on being stopped out—weighted by the probability of being stopped out.

The stopping premium (4) measures the expected-return difference per unit time between

the stop-loss policy S and the portfolio strategy P , but this metric may yield misleading

comparisons between two stop-loss policies that have very different parameter values. For

example, for a given portfolio strategy P , suppose S1 has a stopping premium of 1% and

S2 has a stopping premium of 2%; this suggests that S2 is superior to S1. But suppose the

parameters of S2 implies that S2 is active only 10% of the time (i.e., one month out of every

10 on average), whereas the parameters of S1 implies that it is active 25% of the time. On

a total-return basis, S1 is superior, even though it yields a lower expected-return difference

per-unit-time. The stopping ratio ∆µ/po given in (6) addresses this scale issue directly by

dividing the stopping premium by the probability po. The reciprocal of po is the expected

number of periods that st=0 or the expected duration of the stop-loss period. Multiplying

the per-unit-time expected-return difference ∆µ by this expected duration 1/po then yields

the total expected-return difference ∆µ/po between rf and rt.

The probability po of a stop-loss is of interest in its own right because more frequent

stop-loss events imply more trading and, consequently, more transactions costs. Although

we have not incorporated transactions costs explicitly into our analysis, this can be done

easily by imposing a return penalty in (3):

rst ≡ strt + (1− st)rf − κ |st − st−1|, (7)
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where κ>0 is the one-way transactions cost of a stop-loss event. For expositional simplicity,

we shall assume κ=0 for the remainder of this paper.

Using the metrics proposed in Definition 2, we now have a simple way to answer the

question posed in our title: stop-loss policies can be said to stop losses when the correspond-

ing stopping premium is positive. In other words, a stop-loss policy adds value if and only

if its implementation leads to an improvement in the overall expected return of a portfolio

strategy.

Of course, this simple interpretation of a stop-loss policy’s efficacy is based purely on

expected return, and ignores risk. Risk matters because it is conceivable that a stop-loss

policy with a positive stopping premium generates so much additional risk that the risk-

adjusted expected return is less attractive with the policy in place than without it. This

may seem unlikely because by construction, a stop-loss policy involves switching out of

P into a risk-free asset, implying that P spends more time in higher-risk assets than the

combination of P and S. However, it is important to acknowledge that P and S are dynamic

strategies and static measures of risk such as standard deviation are not sufficient statistics

for the intertemporal risk/reward trade-offs that characterize a dynamic rational expectations

equilibrium (e.g., Merton, 1973; Lucas, 1978). Nevertheless, it is still useful to gauge the

impact of a stop-loss policy on volatility of a portfolio strategy P , as only one of possibly

many risk characteristics of the combined strategy. To that end, we have:
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Definition 3. Let the variance difference ∆σ2 of a stopping strategy be given by:

∆σ2 ≡ Var[rst] − Var[rt] (8)

= E
[

Var[rst|st]
]

+ Var
[

E[rst|st]
]

− E
[

Var[rt|st]
]

− Var
[

E[rt|st]
]

(9)

= − poVar[rt|st = 0] +

po(1− po)

[

(

rf − E[rt|st = 0]
)2 −

(

µ− E[rt|st = 0]

1− po

)2]

(10)

From an empirical perspective, standard deviations are often easier to interpret, hence we

also define the quantity ∆σ≡
√

Var[rst]− σ.

Given that a stop-loss policy can affect both the mean and standard deviation of the

portfolio strategy P , we can also define the difference between the Sharpe ratios of P with

and without S:

∆SR ≡ E[rst]− rf
σs

− µ− rf
σ

. (11)

However, given the potentially misleading interpretations of the Sharpe ratio for dynamic

strategies such as P and S, we refrain from using this metric for evaluating the efficacy of

stop-loss policies.9

3.2. Generalizations and Qualifications

The basic framework outlined in Section 3.1 can be generalized in many ways. For

example, instead of switching out of P and into a completely risk-free asset, we can allow

F to be a lower-risk asset but with some non-negligible volatility. More generally, instead

9See Sharpe (1994), Spurgin (2001), and Lo (2002) for details.
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of focusing on binary asset-allocation policies, we can consider a continuous function ω(·) ∈

[0, 1] of cumulative returns that declines with losses and rises with gains. Also, instead of a

single “safe” asset, we might consider switching into multiple assets when losses are realized,

or incorporate the stop-loss policy directly into the portfolio strategy P itself so that the

original strategy is affected in some systematic way by cumulative losses and gains. Finally,

there is nothing to suggest that stop-loss policies must be applied at the portfolio level—such

rules can be implemented security-by-security or asset-class by asset-class.

Of course, with each generalization, the gains in flexibility must be traded off against

the corresponding costs of complexity and analytic intractability. These trade-offs can only

be decided on a case-by-case basis, and we leave it to the reader to make such trade-offs

individually. Our more modest objective in this paper is to provide a complete solution for

the leading case of the simple stop-loss policy in Definition (1). From our analysis of this

simple case, a number of generalizations should follow naturally, some of which are explored

in Kaminski (2006).

However, an important qualification regarding our approach is the fact that we do not

derive the simple stop-loss policy from any optimization problem—it is only a heuristic,

albeit a fairly popular one among many institutional and retail investors. This is a distinct

departure from much of the asset-pricing literature in which investment behavior is modelled

as the outcome of an optimizing individual seeking to maximize his expected lifetime utility

by investing in a finite set of securities subject to a budget constraint (e.g., Merton, 1971).

While such a formal approach is certainly preferable if the consumption/investment problem

is well posed. For example, if preferences are given and the investment opportunity set is
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completely specified, the simple stop-loss policy can still be studied in the absence of such

structure.

Moreover, from a purely behavioral perspective, it is useful to consider the impact of a

stop-loss heuristic even if it is not derived from optimizing behavior, precisely because we

seek to understand the basis of such behavior. Of course, we can ask the more challenging

question of whether the stop-loss heuristic can be derived as the optimal portfolio rule for

a specific set of preferences, but such inverse-optimal problems become intractable very

quickly (e.g., Chang, 1988). Instead, we have a narrower set of objectives in this paper:

to investigate the basic properties of simple stop-loss heuristics without reference to any

optimization problem, and with as few restrictions as possible on the portfolio strategy P

to which the stop-loss policy is applied. The benefits of our narrower focus are the explicit

analytical results described in Section 4, and the intuition that they provide for how stop-loss

mechanisms add or subtract value from an existing portfolio strategy.

Although this approach may be more limited in the insights it can provide to the invest-

ment process, the siren call of stop-loss rules seems so universal that we hope to derive some

useful implications for optimal consumption and portfolio rules from our analysis. Moreover,

the idea of overlaying one set of heuristics on top of an existing portfolio strategy has a cer-

tain operational appeal that many institutional investors have found so compelling recently

(e.g., so-called “portable alpha” strategies). Overlay products can be considered a general

class of “superposition strategies,” which is explored in more detail in Kaminski (2006).
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4. Analytical Results

Having defined the basic framework in Section 3 for evaluating the performance of simple

stop-loss rules, we now apply them to several specific return-generating processes for {rt},

including the Random Walk Hypothesis in Section 4.1, mean-reversion and momentum pro-

cesses in Section 4.2, and a statistical regime-switching model in Section 4.3. The simplicity

of our stop-loss heuristic will allow us to derive explicit conditions under which stop-loss

policies can stop losses in each of these cases.

4.1. The Random Walk Hypothesis

Since the Random Walk Hypothesis is one of the most widely used return-generating

processes in the finance literature, any analysis of stop-loss policies must consider this leading

case first. Given the framework proposed in Section 3, we are able to derive a surprisingly

strong conclusion about the efficacy of stop-loss rules:

Proposition 1. If {rt} satisfies the Random Walk Hypothesis so that:

rt = µ + εt , εt
IID∼ White Noise(0, σ2

ε ), (12)

then the stop-loss policy has the following properties:

∆µ = po(rf − µ) = − poπ. (13a)

∆µ

po
= − π. (13b)

∆σ2 = −poσ
2 + po(1− po)π

2. (13c)

∆SR = − π

σ
+

∆µ + π√
∆σ2 + σ2

. (13d)
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Proof: See Appendix A.1.

Proposition 1 shows that, for any portfolio strategy with an expected return greater

than the risk-free rate rf , the Random Walk Hypothesis implies that the stop-loss policy

will always reduce the portfolio’s expected return since ∆µ ≤ 0. In the absence of any

predictability in {rt}, whether or not the stop-loss is activated has no informational content

for the portfolio’s returns; hence, the only effect of a stop-loss policy is to replace the portfolio

strategy P with the risk-free asset when the strategy is stopped out, thereby reducing the

expected return by the risk premium of the original portfolio strategy P . If the stop-loss

probability po is large enough and the risk premium is small enough, (13) shows that the

stop-loss policy can also reduce the volatility of the portfolio.

The fact that there are no conditions under which the simple stop-loss policy can add

value to a portfolio with IID returns may explain why stop-loss rules have been given so little

attention in the academic finance literature. The fact that the Random Walk Hypothesis

was widely accepted in the 1960s and 1970s, and considered to be synonymous with market

efficiency and rationality, eliminated the motivation for stop-loss rules altogether. In fact, our

simple stop-loss policy may be viewed as a more sophisticated version of the “filter rule” that

was tested extensively by Alexander (1961) and Fama and Blume (1966). Their conclusion

that such strategies did not produce any excess profits was typical of the outcomes of many

similar studies during this period.

However, despite the lack of interest in stop-loss rules in academic studies, investment

professionals have been using such rules for many years, and part of the reason for this di-

chotomy may be the fact that the theoretical motivation for the Random Walk Hypothesis is
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stronger than the empirical reality. In particular, Lo and MacKinlay (1988) presented com-

pelling evidence against the Random Walk Hypothesis for weekly U.S. stock-index returns

from 1962 to 1985, which has subsequently been confirmed and extended to other markets

and countries by a number of other authors. In the next section, we shall see that, if asset-

returns do not follow random walks, there are several situations in which stop-loss policies

can add significant value to an existing portfolio strategy.

4.2. Mean Reversion and Momentum

In the 1980s and 1990s, several authors documented important departures from the Ran-

dom Walk Hypothesis for U.S. equity returns (e.g., Fama and French,1988; Lo and MacKin-

lay, 1988, 1990, 1999; Poterba and Summers, 1988; Jegadeesh, 1990; Lo, 1991; and Jegadeesh

and Titman, 1993) and, in such cases, the implications for the stop-loss policy can be quite

different than in Proposition 1. To see how, consider the simplest case of a non-random-walk

return-generating process, the AR(1):

rt = µ + ρ(rt−1 − µ) + εt , εt
IID∼ White Noise(0, σ2

ε ) , ρ ∈ (−1, 1) (14)

where the restriction that ρ lies in the open interval (−1, 1) is to ensure that rt is a stationary

process (see Hamilton, 1994).

This simple process captures a surprisingly broad range of behavior depending on the

single parameter ρ, including the Random Walk Hypothesis (ρ = 0), mean reversion (ρ ∈

(−1, 0)), and momentum (ρ = (0, 1)). However, the implications of this return-generating

process for our stop-loss rule are not trivial to derive because the conditional distribution of

rt, conditioned on Rt−1(J), is quite complex. For example, according to Definition (4), the
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expression for the stopping premium ∆µ is given by:

∆µ = po(rf − E[rt|st = 0]) (15)

but the conditional expectation E[rt|st = 0] is not easy to evaluate in closed-form for an

AR(1). For ρ 6=0, the conditional expectation is likely to differ from the unconditional mean

µ since past returns do contain information about the future, but the exact expression is

not easily computable. Fortunately, we are able to obtain a good first-order approximation

under certain conditions, yielding the following result:

Proposition 2. If {rt} satisfies an AR(1) (14), then the stop-loss policy (2) has the follow-

ing properties:

∆µ

po
= − π + ρσ + η(γ, δ, J) (16)

and for ρ > 0 and reasonable stop-loss parameters, it can be shown that η(γ, δ, J) ≥ 0, which

yields the following lower bound:

∆µ

po
≥ − π + ρσ, (17)

Proof: See Appendix A.2.

Proposition 2 shows that the impact of the stop-loss rule on expected returns is the sum

of three terms: the negative of the risk premium, a linear function of the autoregressive

parameter ρ, and a remainder term. For a mean-reverting portfolio strategy, ρ< 0; hence,

the stop-loss policy hurts expected returns to a first-order approximation. This is consistent
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with the intuition that mean-reversion strategies benefit from reversals, thus a stop-loss

policy that switches out of the portfolio after certain cumulative losses will miss the reversal

and lower the expected return of the portfolio. On the other hand, for a momentum strategy,

ρ>0, in which case there is a possibility that the second term dominates the first, yielding a

positive stopping premium. This is also consistent with the intuition that in the presence of

momentum, losses are likely to persist, therefore, switching to the risk-free asset after certain

cumulative losses can be more profitable than staying fully invested.

In fact, (17) implies that a sufficient condition for a stop-loss policy with reasonable

parameters to add value for a momentum-AR(1) return-generating process is:

ρ ≥ π

σ
≡ SR, (18)

where SR is the usual Sharpe ratio of the portfolio strategy. In other words, if the return-

generating process exhibits enough momentum, then the stop-loss rule will indeed stop losses.

This may seem like a rather high hurdle, especially for hedge-fund strategies that have Sharpe

ratios in excess of 1.00. However, note that (18) assumes that the Sharpe ratio is calibrated

at the same sampling frequency as ρ. Therefore, if we are using monthly returns in (14), the

Sharpe ratio in (18) must also be monthly. A portfolio strategy with an annual Sharpe ratio

of 1.00, annualized in the standard way by multiplying the monthly Sharpe ratio by
√
12,

implies a monthly Sharpe ratio of 0.29, which is still a significant hurdle for ρ but not quite

as imposing as 1.00.10

10Of course, the assumption that returns follow an AR(1) makes the usual annualization factor of
√
12

incorrect, which is why we use the phrase “annualized in the standard way.” See Lo (2002) for the proper
method of annualizing Sharpe ratios in the presence of serial correlation.
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4.3. Regime-Switching Models

Statistical models of changes in regime, such as the Hamilton (1989) model, are parsimo-

nious ways to capture apparent nonstationarities in the data, such as sudden shifts in means

and variances. Although such models are, in fact, stationary, they do exhibit time-varying

conditional means and variances, conditioned on the particular state that prevails. Moreover,

by assuming that transitions from one state to another follow a time-homogenous Markov

process, regime-switching models exhibit rich time-series properties that are surprisingly dif-

ficult to replicate with traditional linear processes. Regime-switching models are particularly

relevant for stop-loss policies because one of the most common reasons investors put forward

for using a stop-loss rule is to deal with a significant change in market conditions, such as

October 1987 or August 1998. To the extent that this motivation is genuine and appropriate,

we should see significant advantages to using stop-loss policies when the portfolio return {rt}

follows a regime-switching process.

More formally, let rt be given by the following stochastic process:

rt = Itr1t + (1− It)r2t , rit
IID∼ N (µi, σ

2
i ) , i = 1, 2 (19a)

A ≡









It+1=1 It+1=0

It=1 p11 p12

It=0 p21 p22









(19b)

where It is an indicator function that takes on the value 1 when state 1 prevails and 0

when state 2 prevails, and A is the Markov transition probabilities matrix that governs the

transitions between the two states. The parameters of (19) are the means and variances of

the two states, (µ1, µ2, σ
2
1, σ

2
2), and the transition probabilities (p11, p22). Without any loss
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in generality, we adopt the convention that state 1 is the higher-mean state so that µ1>µ2.

Given assumption (A2), this convention implies that µ1> rf , which is an inequality we will

use below. The six parameters of (19) may be estimated numerically via maximum likelihood

(Hamilton, 1994).

Despite the many studies in the economics and finance literatures that have implemented

the regime-switching model (19), the implications of regime-switching returns for the invest-

ment process has only recently been considered (see Ang and Bekaert, 2004). This is due,

in part, to the analytical intractability of (19)—while the specification may seem simple, it

poses significant challenges for even the simplest portfolio optimization process. However,

numerical results can easily be obtained via Monte Carlo simulation, and we provide such

results in Sections 5.

In this section, we investigate the performance of our simple stop-loss policy for this

return-generating process. Because of the relatively simple time-series structure of returns

within each regime, we are able to characterize the stopping premium explicitly:

Proposition 3. If {rt} satisfies the two-state Markov regime-switching process (19), then

the stop-loss policy (2) has the following properties:

∆µ = po,1(rf − µ1) + po,2(rf − µ2) (20)

∆µ

po
= (1− p̃o,2)(rf − µ1) + p̃o,2(rf − µ2) (21)
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where:

po,1 ≡ Prob ( st=0, It=1 ). (22a)

po,2 ≡ Prob ( st=0, It=0 ). (22b)

p̃o,2 ≡ po,2
po

= Prob (It=0 | st=0) . (22c)

If the risk-free rate rf follows the same two-state Markov regime-switching process (19), with

expected returns rf1 and rf2 in states 1 and 2, respectively, then the stop-loss policy has the

following properties:

∆µ = po,1(rf1 − µ1) + po,2(rf2 − µ2). (23)

∆µ

po
= (1− p̃o,2)(rf1 − µ1) + p̃o,2(rf2 − µ2) . (24)

The conditional probability p̃o,2 can be interpreted as the accuracy of the stop-loss policy in

anticipating the low-mean regime. The higher is this probability, the more likely it is that

the stop-loss policy triggers during low-mean regimes (regime 2), which should add value to

the expected return of the portfolio as long as the risk-free asset-return rf is sufficiently high

relative to the low-mean expected return µ2.

In particular, we can use our expression for the stopping ratio ∆µ/po to provide a bound

on the level of accuracy required to have a non-negative stopping premium. Consider first the

case where the risk-free asset rf is the same across both regimes. For levels of p̃o,2 satisfying

the inequality:

p̃o,2 ≥ µ1 − rf
µ1 − µ2

(25)

23



the corresponding stopping premium ∆µ will be non-negative. By convention, µ1>µ2, and

by assumption (A2), µ1>rf , therefore the sign of the right side of (25) is positive. If rf is less

than µ2, then the right side of (25) is greater than 1, and no value of p̃o,2 can satisfy (25).

If the expected return of equities in both regimes dominates the risk-free asset, then the

simple stop-loss policy will always decrease the portfolio’s expected return, regardless of how

accurate it is. To see why, recall that returns are independently and identically distributed

within each regime, and we know from Section 4.1 that our stop-loss policy never adds value

under the Random Walk Hypothesis. Therefore, the only source of potential value-added

for the stop-loss policy under a regime-switching process is if the equity investment in the

low-mean regime has a lower expected return than the risk-free rate (i.e., µ2<rf). In this

case, the right side of (25) is positive and less than 1, implying that sufficiently accurate

stop-loss policies will yield positive stopping premia.

Note that the threshold for positive stopping premia in (25) is decreasing in the spread

µ1−µ2. As the difference between expected equity returns in the high-mean and low-mean

states widens, less accuracy is needed to ensure that the stop-loss policy adds value. This

may be an important psychological justification for the ubiquity of stop-loss rules in practice.

If an investor possesses a particularly pessimistic view of the low-mean state, implying a large

spread between µ1 and µ2, then our simple stop-loss policy may appeal to him even if its

accuracy is not very high.

5. Empirical Analysis

To illustrate the potential relevance of our framework for analyzing stop-loss rules, we

consider the performance of the simple stop-loss rule when applied to equity portfolios.
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Given that most financial hedging is done in the futures markets, we apply stop-loss rules

on equities using daily futures prices from January 5, 1993 until November 7, 2011. Similar

to how a futures position would be held, the futures prices represent a weighted basket of

prices over various maturities shorter in the curve, which are rolled over to avoid jumps in

prices near maturity. The IMM S&P futures contract is used for a position in U.S. Equities

and the 10-year CBT Treasury note futures contract. In this given sample period, the two

portfolios have a negative correlation of -17.29%. In Table 1, the basic statistical properties

of the two return series is detailed. In Table 2, the parameter estimates for a two-state

regime-switching model are also detailed.

Despite the net positive serial autocorrelation in the IMM S&P contract, over smaller

time intervals the serial autocorrelation seems to be time varying. In Figures 1 and 2, rolling

point estimates of serial autocorrelation are plotted using both a 150-day and a 75-day

window. These graphs suggests that there are periods when stocks can be either momentum

driven or mean reverting. Given the theoretical analysis in this paper, during periods of

sufficient momentum stop-loss policies might provide a stopping premium. In the same

vein, during periods of mean reversion stop-loss policies may produce negative stopping

premiums. When a simple regime-switching model is applied to the IMM S&P contract

basket, the estimates also suggest that there are two regimes: one positive low volatility

regime and one negative higher volatility regime, which occurs less often. Given the analytic

results in Section 4, these parameter estimates indicate stopping rules, which can accurately

determine low performance regimes in stocks may add stopping premium.
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5.1. Basic Results

To examine the performance of stop-loss rules, the approach can be applied from short-

term to longer time where the strategy can be applied daily (1 day), weekly (5 days), monthly

(20 days), and quarterly (60 days). For each frequency, the stopping windows will be mul-

tiples of 3, 5, and 10 times the length of the data frequency (daily, weekly, monthly, and

quarterly). The different strategy combinations include daily (3,1), (5,1), (10,1), weekly

(15,5), (25,5), (50,5), monthly (60,20), (100,20), (200,20), and quarterly (180,60), (300,60),

(600,60). Consistent with our theoretical framework, (i,j) represent the size of the stop-

ping window and the re-entry window is one period for each time frequency. The stopping

thresholds, (γ), will vary from -1.5 to -0.5 standard deviations from the mean at the relevant

frequency. For example, if the stopping window is three months long the stops will be set

relative to deviations from -1.5 to -0.5 standard deviations. To avoid data selection bias,

we review a large range of stops to demonstrate how the performance depends on threshold

choices. The re-entry threshold, (δ), will also be modulated to the data frequency and will

simply vary between -0.5 to 1 standard deviation from the mean. This approach is used to

allow for comparison across different frequencies of time. For example, a one standard devia-

tion stop-loss in weekly versus a one standard deviation stop-loss quarterly can be compared

to see how the time frequency impacts the results.

Given the large set of parameters we analyze in this experiment, it is not surprising

that the performance of these strategies varies. There are a few key trends in the results.

First, shorter term, lower frequency stop-loss policies have negative stopping premiums over

large ranges of parameters. Longer term stop-loss at frequencies above one month perform
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better and can achieve positive stopping premiums. In Figure 3, the stopping premium

for all frequencies and combinations of threshold parameters is plotted as a function of the

stopping threshold with delta the re-entry threshold at a 0 standard deviation threshold.

In Figures 4 and 5, the empirical results for the change in Sharpe Ratio and change in

standard deviation demonstrate how for longer term stop-loss strategies the Sharpe ratio

can improve as standard deviation decreases. Second, the decision to exit and the stopping

threshold seems to have a larger impact on the variation in results than the re-entry threshold.

Putting these results together, the empirical results suggest that the use of longer term stop-

loss strategies might have improved performance consistent with anecdotal discussion of the

strategy in practice.

6. Conclusion

In this paper, we provide a concrete answer to the question of when do stop-loss rules stop

losses? The answer depends, of course, on the return-generating process of the underlying

investment for which the stop-loss policy is implemented, as well as the particular dynamics

of the stop-loss policy itself. If “stopping losses” is interpreted as having a higher expected

return with the stop-loss policy than without it, then for a specific binary stop-loss policy,

we derive various conditions under which the expected-return difference, which we call the

stopping premium, is positive. We show that under the most common return-generating

process, the Random Walk Hypothesis, the stopping premium is always negative. The

widespread cultural affinity for the Random Walk Hypothesis, despite empirical evidence

to the contrary, may explain the general indifference to stop-loss policies in the academic

finance literature.
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However, under more empirically plausible return-generating processes such as momen-

tum or regime-switching models, we show that stop-loss policies can generate positive stop-

ping premia. When applied to a standard buy-and-hold strategy using daily U.S. futures

contracts from January 1993 to November 2011 where the stop-loss asset is U.S. long-term

bonds futures, we find that at longer sampling frequencies, certain stop-loss policies add

value over a buy-and-hold portfolio while substantially reducing risk by reducing strategy

volatility, consistent with their objectives in practical applications. These empirical results

suggest important nonlinearities in aggregate stock and bond returns that have not been

fully explored in the empirical finance literature.

Our analytical and empirical results contain several points of intersection with the be-

havioral finance literature. First, the flight-to-safety phenomena, which is best illustrated

by events surrounding the default of Russian government debt in August 1998, may create

momentum in equity returns and increase demand for long-term bonds, creating positive

stopping premia as a result. Second, systematic stop-loss policies may profit from the dis-

position effect and loss aversion, the tendency to sell winners too soon and hold on to losers

too long. Third, if investors are ambiguity-averse, large negative returns may cause them to

view equities as more ambiguous which, in relative terms, will make long-term bonds seem

less ambiguous. This may cause investors to switch to bonds to avoid uncertainty about

asset returns.

More generally, there is now substantial evidence from the cognitive sciences literature

that losses and gains are processed by different components of the brain. These different

components provide a partial explanation for some of the asymmetries observed in exper-
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imental and actual markets. In particular, in the event of a significant drop in aggregate

stock prices, investors who are generally passive will become motivated to trade because

mounting losses will cause them to pay attention when they ordinarily would not. This

influx of uninformed traders, who have less market experience and are more likely to make

irrational trading decisions, can have a significant impact on equilibrium prices and their

dynamics. Therefore, even if markets are usually efficient, on occasions where a significant

number of investors experience losses simultaneously, markets may be dominated temporarily

by irrational forces. The mechanism for this coordinated irrationality is cumulative loss.

Of course, our findings shed little light on the controversy between market efficiency and

behavioral finance. The success of our simple stop-loss policy may be due to certain nonlinear

aspects of stock and bond returns from which our strategy happens to benefit (e.g., avoiding

momentum on the downside and exploiting asymmetries in asset returns following periods

of negative cumulative returns). And from the behavioral perspective, our stop-loss policy is

just one mechanism for avoiding or anticipating the usual pitfalls of human judgment (e.g.,

the disposition effect, loss aversion, ambiguity aversion, and flight-to-safety).

In summary, both behavioral finance and rational asset-pricing models may be used to

motivate the apparent effectiveness of stop-loss policies, in addition to the widespread use

of such policies in practice. This underscores the importance of learning how to deal with

loss as an investor, of which a stop-loss rule is only one dimension. As difficult as it may be

to accept, for the many investors who lamented, after the subprime mortgage meltdown of

2007–2008, that “if only I had gotten out sooner, I wouldn’t have lost so much,” they may

have been correct.
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Window
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Fig. 3. Stopping premium, (∆µ), from short-term (3,1) stop-loss strategies to longer-term

(1200,120) stop-loss strategies with exit thresholds, (γ), of 1.5, 1.2, 1, 0.8, and 0.5 standard devia-

tions from the mean with a 0 standard deviation re-entry threshold, (δ)
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(1200,120) stop-loss strategies with exit thresholds, (γ), of 1.5, 1.2, 1, 0.8, and 0.5 standard devia-

tions from the mean with a 0 standard deviation re-entry threshold, (δ)
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So, if we could separate stocks to mean reverting and momentum cohorts, that would help.
For MR stocks, stop loss decreases the profit, for Momentum, it increases.
In particular:
-I think dividend paying (like utility) companies are more MR, because there is a ‘fundamental’ value in them,
And they cannot go down too much, or they cannot increase too much.
-there are some Growth stile companies that can trend for longer term, such as
                -AAPL is trending up, because it has a successful product series over the years
                -Blackberry is trending down, because  it lost its Mojo… ? (that was very scientific definition…?)
Another thing that have come into my mind, what you have mentioned, is daily or monthly trading.
More generally, we are talking about the ‘rebalancing’ frequency: (the frequency of the time when we peek at the prices), which can be:
-every minute/second (=intraday stop loss), 
-every half an hour, 
-daily (End-of-the-Day stop loss), 
-weekly, monthly  (stop loss only when we rebalance the portfolio.)
These things obviously matter, because the PDF article contends that we have to have Momentum, for the stop loss to be profitable.
Correct me if I am wrong, but I think even growth stocks (APPL, Blackberry) behave partially MR and partially Momentum way.
In particular,
-every minute frequency: MR
-daily: MR or Momentum (or random)
-monthly rebalancing, especially  6-9 month: Momentum
-5-years rebalancing: MR again
So, there is a kind of sweet spot there: 
-Too short term rebalancing frequency: it is too much noise, too random, therefore, no Momuntum, but MR there.
-At medium term rebalancing, the product cycles matter: there is a new product every 9 months; there are quarterly earnings reports every 3 months, etc.
Human life (and momentums of human activities) happens on this level. A new biotech medicine, a new Tesla car, a new iPhone takes months until it is marketed, and 
The profit goes to these companies.
-On the very long term, If I remember correctly, I read there is MR again in the Asset classes (commodities, bonds, stocks, properties), but
I don’t know whether it is related to company stocks or not.
If those things are true in the PDF article, it is difficult to use stop losses at the intraday, or even the daily level, when too many things are random and noise,
However, with monthly rebalancing, stop losses will show better value, as the Momentum is there.
But…
end-of-the-month stop-loss feels like no stop loss at all.
It doesn’t prevent sleepless nights.
My two cents.
I still have to study the PDF a little more.
Kind regards,
George
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deviations from the mean with a 0 standard deviation re-entry threshold, (δ)
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Ann. Ann. ρ Skew Kurt Min Max Ann. MDD
Mean (%) SD (%) (%) (%) Sharpe (%)

IMM S&P 7.295 19.499 -0.06 0.12 14.24 -9.88 14.12 0.37 26.62
CBT 10YR TN 1.181 6.331 0.02 -0.09 6.11 -2.43 3.61 0.19 5.25

Table 1

Summary statistics for U.S. Equities (IMM S&P) and long-term U.S. Government Bonds (CBT 10

YR) from January 5, 1993 to November 7,2011. Statistics are annualized assuming 250 days per

year.
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Text Box
Dear Mr. Charmat, dear George,
This study seems very useful. Their findings are very interesting, especially the followings:
• "We show that the stopping premium is inextricably linked to the stochastic process driving the underlying portfolio’s return. If the portfolio follows a random walk (i.e., independently and identically distributed returns) the stopping premium is always negative. This may explain why the academic and industry literature has looked askance at stop-loss policies to date. If returns are unforecastable, stop-loss rules simply force the portfolio out of higher-yielding assets on occasion, thereby lowering the overall expected return without adding any benefits. In such cases, stop-loss rules never stop losses.
However, for non-random-walk portfolios, we find that stop-loss rules can stop losses. For example, if portfolio returns are characterized by “momentum” or positive serial correlation, we show that the stopping premium can be positive and is directly proportional to the magnitude of return persistence. Not surprisingly, if conditioning on past cumulative returns changes the conditional distribution of a portfolio’s return, it should be possible to find a stop-loss policy that yields a positive stopping premium."
• "However, an important qualification regarding our approach is the fact that we do not derive the simple stop-loss policy from any optimization problem—it is only a heuristic, albeit a fairly popular one among many institutional and retail investors….For example, if preferences are given and the investment opportunity set is completely specified, the simple stop-loss policy can still be studied in the absence of such structure."
• "Proposition 2 shows that the impact of the stop-loss rule on expected returns is the sum of three terms: the negative of the risk premium, a linear function of the autoregressive parameter ?, and a remainder term. For a mean-reverting portfolio strategy, ? < 0; hence, the stop-loss policy hurts expected returns to a first-order approximation. This is consistent with the intuition that mean-reversion strategies benefit from reversals, thus a stop-loss policy that switches out of the portfolio after certain cumulative losses will miss the reversal and lower the expected return of the portfolio. On the other hand, for a momentum strategy, ?>0, in which case there is a possibility that the second term dominates the first, yielding a positive stopping premium. This is also consistent with the intuition that in the presence of momentum, losses are likely to persist, therefore, switching to the risk-free asset after certain cumulative losses can be more profitable than staying fully invested."
• "In fact, (17) implies that a sufficient condition for a stop-loss policy with reasonable parameters to add value for a momentum-AR(1) return-generating process is:
 
where SR is the usual Sharpe ratio of the portfolio strategy. In other words, if the return-generating process exhibits enough momentum, then the stop-loss rule will indeed stop losses. This may seem like a rather high hurdle, especially for hedge-fund strategies that have Sharpe ratios in excess of 1.00."
• The "Regime-Switching Model"
All in all, I have almost the same thoughts in connection with using stop-loss: it could be profitable (either higher returns or lower risk) if (and only if) we understand the driving force of our examined strategy. Furthermore, in my opinion, different stop-loss rules are recommended in different regimes (use stop-loss in follow-through periods and do not in mean-reverting ones) and for different strategies (volatility products or stocks; continous or only events, seasonalities;daily or monthly trading).
Best regards,
Balazs




µ0 µ1 σ0 σ1 p
IMM S&P 22.3% -39.0% 10.3% 33.0% 0.72

Table 2

Annualized parameter estimates for a two-state Hamilton model estimated via the EM Algorithm

on the IMM S&P Futures Contracts from January 5, 1993 to November 7, 2011.
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Appendix

In this Appendix, we provide proofs of Propositions 1 and 2 in Sections A.1 and A.2.

A.1. Proof of Proposition 1

The conclusion follows almost immediately from the observation that the conditional ex-

pectations in (4) and (6) are equal to the unconditional expectations because of the Random

Walk Hypothesis (conditioning on past returns provides no incremental information), hence:

∆µ = − poπ ≤ 0 (.1)

∆µ

po
= − π ≤ 0 (.2)

and the other relations follow in a similar manner.

A.2. Proof of Proposition 2

Let rt be a stationary AR(1) process:

rt = µ + ρ(rt−1 − µ) + εt, εt
IID∼ White Noise(0, σ2

ε ), ρ ∈ (−1, 1) (.3)

We seek the conditional expectation of rt given that the process is stopped out. If we let

J be sufficiently large and δ = −∞, st=0 is equivalent to Rt−1(J)<− γ and st−1=1 with

Rt−2(J)≥− γ. Using log returns, we have:

E[rt|st = 0] = E[rt|Rt−1(J)<− γ, Rt−2(J)≥− γ] (.4)

= µ(1− ρ) + ρE[rt−1 + εt|Rt−1(J)<− γ, Rt−2(J)≥− γ] (.5)

= µ(1− ρ) + ρE[rt−1|Rt−1(J)<− γ, Rt−2(J)≥− γ]. (.6)
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By definition Rt−1(J) ≡ rt−1 + · · · + rt−J and Rt−2(J) = rt−2 + · · · + rt−J−1. Setting

y ≡ rt−2 + · · ·+ rt−J then yields:

E[rt|st = 0] = µ(1− ρ) + ρE[rt−1|Rt−1(J)<− γ, Rt−2(J)≥− γ] (.7)

= µ(1− ρ) + ρEy

[

E[rt−1|rt−1<− γ − y, rt−J−1≥− γ − y]
]

. (.8)

For J large enough, the dependence between rt−J−1 and rt−1 is of order o(ρJ ) ≈ 0, hence:

Ey

[

E[rt−1|rt−1<− γ − y]
]

≤ Ert−J−1

[

E[rt−1|rt−1<rt−J−1]
]

(.9)

≤ µ − σ, (.10)

which implies:

E[rt|st = 0] ≤ µ(1− ρ) + ρ(µ− σ). (.11)

≤ µ − ρσ. (.12)
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