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Age-related declines in endothelial function can lead to cognitive decline. However,
little is known about the relationships between endothelial function and specific
neurocognitive functions. This study explored the relationship between measures of
endothelial function (reactive hyperemia index; RHI), white matter (WM) health (fractional
anisotropy, FA, and WM hyperintensity volume, WMH), and executive function (Trail
Making Test (TMT); Trail B − Trail A). Participants were 36 older adults between the
ages of 59 and 69 (mean age = 63.89 years, SD = 2.94). WMH volume showed no
relationship with RHI or executive function. However, there was a positive relationship
between RHI and FA in the genu and body of the corpus callosum. In addition, higher
RHI and FA were each associated with better executive task performance. Tractography
was used to localize the WM tracts associated with RHI to specific portions of cortex.
Results indicated that the RHI-FA relationship observed in the corpus callosum primarily
involved tracts interconnecting frontal regions, including the superior frontal gyrus
(SFG) and frontopolar cortex, linked with executive function. These findings suggest
that superior endothelial function may help to attenuate age-related declines in WM
microstructure in portions of the corpus callosum that interconnect prefrontal brain
regions involved in executive function.

Keywords: aging, endothelial function, reactive hyperemia, diffusion tensor imaging, executive function, white
matter hyperintensity

INTRODUCTION

Age-related decreases in vascular health are a common finding in the literature (Brown
and Thore, 2011) and represent one of many potential mechanisms that contribute to
declines in the integrity of the aged brain (Duncan, 2011). Identifying clinical markers
of vascular health that serve as surrogate signs of brain health is paramount for early
intervention and prevention efforts. Ideal markers of vascular health would be non-invasive,
able to detect early changes in vascular function, easily administered in clinical settings,
and related to neuroimaging techniques that are sensitive to age-related vascular decline.
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Neuroimaging indicators of white matter (WM) health,
including fractional anisotropy (FA) and WM hyperintensities
(WMHs), are sensitive biomarkers of age-related vascular
decline (Rowe Bijanki et al., 2013; Singer et al., 2014). WMHs
are associated with increased pulse-wave velocity, a measure
of conduit artery stiffness (Singer et al., 2014), and FA is
significantly decreased in vascular disease (Rowe Bijanki et al.,
2013). In addition, changes in FA appear to precede the
manifestation of irreversible WM lesions (de Groot et al., 2013;
Pelletier et al., 2015), and are predictive of future cerebrovascular
incidents (Evans et al., 2016). Despite this evidence, less is known
about the relationship between these neuroimaging predictors
and early detectors of cardiovascular disease, such as endothelial
function (Bruno et al., 2014).

The vascular endothelium is a single cell layer lining all
blood vessels. It plays a critical role in regulating vascular tone
by mediating the relationship between luminal blood flow and
arterial smooth muscle. When compromised, the endothelium
contributes to the pathogenesis of vascular disease (Cahill and
Redmond, 2016). Advancing age is associated with endothelial
dysfunction (Seals et al., 2014), and endothelial dysfunction
is associated with Alzheimer’s disease and vascular dementia
(Dede et al., 2007; Zuliani et al., 2008). Moreover, blood markers
of chronic endothelial dysfunction (i.e., thrombomodulin and
tissue factor) are associated with rarefaction of WM (Hassan
et al., 2003). Collectively, these findings suggest that endothelial
function may play a critical role in combating age-related
declines in brain health.

Endothelial function can bemeasured non-invasively through
the use of digital pulse amplitude technology, which allows for
the assessment of vascular function at the fingertip. A fingertip
plethysmograph capable of sensing volume changes at the digit is
used tomeasure arterial pulsation at rest, and following occlusion
induced reactive hyperemia (Axtell et al., 2010). This measure
of peripheral arterial tone (PAT) is correlated with changes in
vascular tone using flow-mediated dilation techniques (Kuvin
et al., 2003), and has been shown to improve following healthy
lifestyle modifications (Fisher and Hollenberg, 2006; Barringer
et al., 2011).

Little is known about the relationship between endothelial
function and WM health. Endothelial cells mediate vessel caliber
(Gori et al., 2016), and age-related endothelial dysfunction
may induce vasoconstriction and chronic hypoperfusion of
WM (Pantoni, 2002; Seals et al., 2014). Ischemia can then
lead to myelin degeneration and selective oligodendrocyte
death (Pantoni et al., 1996; Petito et al., 1998). Recent findings
support this mechanism by demonstrating a relationship
between microvessel caliber and normal appearing WM. For
example, Mutlu et al. (2016) found that narrower retinal
arterioles, surrogate markers of cerebrovascular health (Ikram
et al., 2006; de Jong et al., 2011), were associated with
poorer WM microstructure (Mutlu et al., 2016). Despite
this evidence, a greater understanding of this potential
relationship is important because maintenance of WM
health is required for proper transmission of information
between cortical regions. Furthermore, age-related changes
in WM health are associated with alteration in functional

brain response and poorer cognitive performance on
executive tasks (Hakun et al., 2015b; Zhu et al., 2015)
and executive function (Charlton et al., 2006; Gold et al.,
2010b).

The Trail Making Test (TMT) is a reliable and valid
assessment of executive function that is related toWMhealth and
overall brain health (Reitan, 1958; Kinnunen et al., 2011). Little
is known about the relationship between executive function and
endothelial health in older adults without cardiovascular disease.
Tsao et al. (2013) reported a positive relationship between
brachial artery diameter, flow velocity, and logical memory, but
did not observe a relationship between reactive hyperemia and
executive function. However, Lim et al. (2015) recently reported
a positive relationship between reactive hyperemia and executive
function. Of note, executive function is sensitive to modifiable
lifestyle variables (i.e., exercise) that can impact vascular health
(Colcombe and Kramer, 2003).

In the present study, we used a non-invasive measure of PAT
to test the hypothesis that endothelial function is associated with
WM health and executive function. We first explored potential
relationships between WM health and reactive hyperemia
using an unbiased voxelwise approach (FA), and objective
quantification of WM lesions (WMHs). We then expanded on
these findings by exploring the potential relationships between a
measure of executive function, the TMT, and both WM health
and reactive hyperemia. Finally, we used tractography methods
to determine the anatomical connectivity patterns of WM tract
clusters showing a correlation with endothelial function in the
voxelwise results.

MATERIALS AND METHODS

Forty-two community dwelling healthy volunteers (14 males)
participated in this study (mean age = 63.89 years, SD = 2.94).
Participants provided written informed consent in a manner
approved by the University of Kentucky Institutional Review
Board and were monetarily rewarded for participating. All
subjects gave written informed consent in accordance with
the Declaration of Helsinki. The protocol was approved by
the University of Kentucky Institutional Review Board. Six of
the forty-two participants were excluded from the study. Of
these six participants one reported a diagnosis of Reynaud’s
disease, three failed to complete the magnetic resonance imaging
(MRI) portion of the study, and two opted to terminate the
test of endothelial health due to discomfort. The 36 remaining
participants (13 males) ranged in age from 59 to 69 (mean
age = 63.7 years, SD = 2.9). Two of the remaining 36 participants
did not complete the TMT (described below) due to time
limitations, and two were eliminated due to TMT outlier status
(>2.5 SD above the mean). Participants met all criteria for
participating in a MRI study. Exclusion for this study included
history of a major head injury and/or concussion, neurological
disorder (e.g., stroke, seizure), reported psychotropic drug use,
or the presence of metal fragments and/or metallic implants
that could cause bodily injury or disrupt the magnetic field.
This information was verified during phone interviews with each
participant. Although we did not screen for current or past
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alcohol consumption, no participant reported consuming greater
than four drinks per week.

Trail Making Test (A and B)
Executive function was evaluated using the TMT. The TMT is a
reliable assessment of executive function that is related to WM
health and overall brain health (Reitan, 1958; Kinnunen et al.,
2011). Trails A and B each contain 25 circles distributed over
a single sheet of paper. The circles in Trail A are numbered
1 through 25 and participants are instructed to draw lines to
connect the numbers in ascending order. The circles in Trail B are
labeled with either numbers, 1 through 13, or letters, A through L.
Participants are instructed to connect the circles in an ascending
pattern while alternating between numbers and letters (i.e., 1-A-
2-B-3, etc.). The difference in the time it takes to complete Trail A
and B (Trail B− Trail A) is used as a measure executive function.

Endothelial Peripheral Arterial Tone
(EndoPAT)
Reactive hyperemia was evaluated using the EndoPAT 2000
(ItamarMedical, Israel). PAT is ameasure of the pulsatile volume
changes to a reactive hyperemia challenge at the fingertip. It
was measured using proprietary non-invasive finger PAT probes.
The reactive hyperemia procedure consisted of a 10-min baseline
recording with the participant in a relaxed seated position with
both arms resting on grooved arm rests. A blood pressure cuff
was used to occlude blood flow to the non-dominant arm for
5-min. Resting systolic blood pressure was used to determine
the appropriate level of cuff inflation. Finally, post-occlusion
pulsatile volume changes were recorded for 5-min. The ratio
between the post- to pre-occlusion average signal size was then
calculated to determine each participant’s reactive hyperemia
index (RHI).

High-Resolution Anatomical Image
Data were acquired on a 3T TIM Siemens scanner at
the University of Kentucky’s Magnetic Resonance Imaging
and Spectroscopy Center. A 32-channel head coil was used.
A single high-resolution, 3D anatomic image was acquired
using a magnetization-prepared rapid gradient-echo (MPRAGE)
sequence with the following parameters: echo time (TE) 2.26 ms,
repetition time (TR) 2530ms, field of view (FOV) of 256mm, flip
angle (FA) of 7◦, and voxel size of 1 mm × 1 mm × 1 mm.

Diffusion Tensor Imaging
Whole brain diffusion tensor images were acquired with 64
non-collinear encoding directions (b = 1000 s/mm2) and six
images without diffusion weighting (b = 0 s/mm2, b0) using a
double-spin echo EPI sequence (TR = 8000 ms, TE = 96 ms,
FOV = 224 mm, 52 slices, 2 mm isotropic resolution).

FLAIR Imaging for WMH
Fluid-attenuated inversion recovery (FLAIR) images were
acquired from older adults with a fat saturated turbo-spin
echo (TSE) sequence (TR = 9000 ms, TE = 89 ms,
TI = 2500 ms, FA = 130◦, acquisition matrix = 256 × 174 × 34,
1 mm × 1 mm × 4 mm voxels).

Diffusion Tensor Imaging Processing and
Analysis
All diffusion tensor imaging (DTI) data were processed and
analyzed using the Functional MRI of the Brain (FMRIB)
Software Library (FSL v4.1.5). Raw images were corrected
for motion and residual eddy current distortion using a
12-parameter affine alignment to the corresponding b0 image
via FSL’s Linear Image Registration Tool (FLIRT1). To exclude
non-brain voxels, FMRIB’s brain extraction tool (BET v2.1) was
used to generate brain masks (Smith et al., 2006). Tensor fitting
and FA calculations were performed using FMRIB’s Diffusion
Toolbox (FDT v2.0).

FSL’s Tract-Based Spatial Statistics (TBSS v1.2; (Smith et al.,
20062) was used to register the FA images into MNI152 space
and perform all subsequent voxel-wise analyses, as described in
detail in our previous work (Gold et al., 2010a; Johnson et al.,
2012). Briefly, these steps included removing likely outliers from
the fitted tensor, non-linearly aligning all FA images to a target
image, and resampling images to a 1 × 1 × 1 mmMNI152 space.
Next, all MNI-transformed FA images were averaged to generate
a mean FA image. This mean FA image was then used to
create a common WM tract skeleton that was thresholded at
a FA value of 0.2. Individual FA images were subsequently
projected onto the FA skeleton in order to account for residual
misalignments.

Multiple regression analysis was performed to explore
potential relationships between reactive hyperemia and FA.
Covariates of no interest, age and sex, were included in
all analyses. FSL’s threshold-free cluster enhancement (TFCE)
method was used to avoid the use of an arbitrary threshold
in the initial cluster formation. A voxelwise permutation
nonparametric test (using 5000 permutations) was employed. A
threshold of P < 0.05 (corrected for multiple comparisons) was
used to identify significant clusters. FSL’s tbss_fill function was
used for visualization purposes.

Diffusion Tensor Imaging Probabilistic
Tractography
Probabilistic tractography was performed to determine the
anatomical connectivity patterns of the cluster that was
correlated with reactive hyperemia in the voxelwise results. FSL’s
Bayesian Estimation of Diffusion Parameters Obtained using
Sampling Techniques (BEDPOSTX) and probabilistic tracking
(PROBTRACKX) tools (Behrens et al., 2003a) were used to
perform the tractography. Both are part of FMRIB’s Diffusion
Toolbox (FDT v2.03).

The cluster identified in the voxelwise results corresponded
to anterior portions of the corpus callosum, including the
body and genu. Target masks were created in MNI space
to determine the connectivity strengths of voxels within the
corpus callosum cluster to different regions of prefrontal and
sensorimotor cortices. Frontal pole (FP), middle frontal gyrus
(MFG), superior frontal gyrus (SFG), inferior frontal gyrus

1https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT
2http://www.fmrib.ox.ac.uk/fsl/tbss/
3https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT
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TABLE 1 | Demographic data, reactive hyperemia index (RHI) and executive function.

Subjects Age Height (m) Weight (kg) RHI Trail B − Trail A§ (s)

n = 36 63.8 (2.9) 1.68 (0.10) 73.4 (13.4) 1.73 (0.5) 35.4 (15.5)
Female n = 23 63.9 (2.8) 1.63 (0.07) 68.8 (10.9) 1.74 (0.4) 32.7 (14.7)
Male n = 13 63.3 (3.2) 1.78∗∗ (0.09) 81.3∗∗ (14.1) 1.72 (0.5) 41.4 (16.4)

Abbreviations: m, meters; kg, kilograms; s, seconds. §Denotes n of 32. Note: values are means and values in parentheses are SD ∗∗P < 0.005.

(IFG), precentral gyrus (PrCG), and postcentral gyrus (PoCG)
masks were created using theHarvard-Oxford Cortical Structural
Atlas provided by FSL’s software package. Separate MFG, SFG
and premotor (PrM) cortex masks were created as described
in our previous work (Johnson et al., 2012). Next, MNI
space to native diffusion space matrices were used to explore
the connection strengths of subject’s native space voxels to
different structural target masks in MNI space. Specifically,
FLIRT was used to generate transformation matrices, and
their inverses, between subject’s native diffusion space and
T1 images, and between T1 images and MNI space. This
was achieved using the FMRIB’s suggested parameters4. The
tractography analysis was conducted using FSL’s ProbtrackX
software (Behrens et al., 2003b, 2007), as described in detail
in our previous work (Johnson et al., 2012; Hakun et al.,
2015a).

A hard segmentation was performed between the seed cluster
identified in the DTI voxelwise analysis and the seven cortical
target masks5. Voxels corresponding to different target regions
were isolated using FSL’s ‘‘fslmaths’’ utility, resulting in seven
different seed cluster image volumes. FSL’s ‘‘fslstats’’ utility was
then used to record the number of voxels within the seed
cluster that corresponded to the respective target mask. The
numbers of voxels were then normalized to the corresponding
target mask [(number of voxels in seed cluster/number of
voxels in the corresponding target mask) × 100] in order
to control for differences in target mask size (i.e., cortical
region size).

Analysis of variance (ANOVA) was used to compare the
normalized number of voxels that were connected to the seven
cortical masks. Bonferroni post hoc analyses were performed
when significant differences were observed.

FLAIR Imaging Analysis for WMH
Assessment
WMH volumes were computed in older adults using an
overall framework employed in our recent work (Smith et al.,
2016). The series of steps included field correction using
the N3 algorithm, T1 image averaging, skull-stripping and
segmenting using Freesurfer. Subsequent manual editing was
performed to remove artifacts particularly in regions between
the lateral ventricles, at the base of the brain and at the level
of the superior sagittal sinus. The skull-stripped T1 image
was then registered to the FLAIR image using FLIRT. A WM
mask was generated from the segmentation results from

4https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/
UserGuide#Registration_within_FDT
5https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT/UserGuide#find_the_biggest

Freesurfer by combining left cortical WM, right cortical WM
and WM hypo-intensities. This WM mask was registered
to the FLAIR image using the same affine transformation
generated above.

The WM mask was applied to the FLAIR image, and mean
and standard deviation of WM signal intensities were estimated
based on voxel histogram fitting using a two-gaussian model.
The voxel intensity histogram was thresholded at a standard
deviation of 2.33 from the mean of the dominant (normal
appearing WM) gaussian fit. The volume of hyperintensities
exceeding the threshold was recorded for each participant
as whole-brain (total) WMH volume. In addition, a separate
measure of frontal WMH volume was computed due to the
importance of the frontal lobes to executive function. The
frontal WMH measure was computed by applying the MNI
Structural Atlas Frontal Lobe Mask, which was edited to include
WM. Participants’ WMH volumes were corrected for their total
intracranial volume (ICV).

RESULTS

Demographic, endothelial and executive function data are shown
in Table 1. There was a significant difference in height and weight
between genders in our study. Males participants were taller
(F(1,34) = 34.3, p < 0.0001) and weighed more (F(1,34) = 8.8,
p = 0.005). No sex difference was observed for RHI or executive
function.

Figure 1 presents the results of the voxelwise multiple
regression analysis between reactive hyperemia and FA. A
positive correlation was observed between RHI and FA in
anterior portions of the corpus callosum including the genu
and body. Subsequent statistical analyses revealed that FA
(r = −0.445, p < 0.05) and RHI (r = −0.359, p = 0.05) were
negatively associated with Trail B − Trail A performance. Scatter
plots illustrating these relationships are presented in Figure 2.

No relationship was observed between frontal WMH volume
and FA (r = 0.144, p = 0.44), reactive hyperemia (r = 0.274,
p = 0.17), or executive function (r = 0.018, p = 0.93) when
controlling for age and sex. In addition, no relationship was
observed between global WMH volume and FA (r = 0.040,
p = 0.83), reactive hyperemia (r = 0.095, p = 0.61), or executive
function (r = 0.17, p = 0.40). Mean global WMH volume (% of
ICV) was 0.30 (SD = 0.19), and mean frontal WMH volume was
0.12 (SD = 0.10).

Figure 3A presents the results from the hard segmentation
of the seed cluster in a single, representative subject. The
topography observed is consistent with that reported using
comprehensive fiber tractography in the corpus callosum
(Hofer and Frahm, 2006). Figure 3B presents a histogram
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FIGURE 1 | Reactive hyperemia index (RHI) is positively correlated with
fractional anisotropy (FA) in the corpus callosum. Slices highlight the positive
correlation observed in the genu and body of the corpus callosum after
controlling for age and sex. The anatomic underlay used for illustration is the
MNI152 T1-weighted 1 mm brain. The registered average FA skeleton is
represented in green. The numbers below each slice represent the respective
x, y and z coordinates of in MNI space.

plot of the normalized number of voxels within the
significant corpus callosum cluster that were connected to
each cortical mask. A significant effect for target mask was
observed, F(6,30) = 266, P < 0.0001. Post hoc comparisons
using Bonferroni correction indicated that the normalized
percentage of voxels corresponding to the SFG (M = 1.71,
SD = 0.75) and frontopolar cortex (M = 0.99, SD = 0.14) were
significantly greater than the normalized percentage of voxels
corresponding to the PrM cortex (M = 0.47, SD = 0.22), IFG
(M = 0.13, SD = 0.28), MFG (M = 0.27, SD = 0.30), PrCG
(M = 0.04, SD = 0.06) and PoCG (M = 0.01, SD = 0.02; all
Ps < 0.0005).

DISCUSSION

The present study represents the first exploration of the
relationship between endothelial function and brain structure.
Our results build upon findings that vascular health may help
to maintain the structural and functional integrity of the aged
brain (Kennedy and Raz, 2009; Leritz et al., 2011; Gauthier
et al., 2015). Specifically, we found that reactive hyperemia was
associated with WM microstructure (FA) in anterior portions
of the corpus callosum. Tractography results indicated that the
region of the corpus callosum showing a significant relationship
with an index of reactive hyperemia (RHI) contained fibers
interconnecting a network of homologous prefrontal cortex
regions, most prominently involving those linked with executive
function. Moreover, both WM microstructure and RHI were

FIGURE 2 | The relationship between RHI, FA, and executive function.
(A) Scatter plot showing the relationship between RHI score and FA in the
corpus callosum cluster identified in the diffusion tensor imaging (DTI)
voxelwise analysis. (B) Scatter plot showing the relationship between
executive function (Trail B − Trail A) and RHI. (C) Scatter plot showing the
relationship between executive function (Trail B − Trail A) and FA.

related to a measure of executive function, the TMT. Unlike
WM microstructure, frontal WMH volume was not related to
reactive hyperemia or executive function. The implications of
these findings are discussed below.
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FIGURE 3 | Connectivity patterns of corpus callosum voxels with cortical
target masks. (A) Results of the hard segmentation from a sagittal slice of a
single representative subject using seven target masks [frontal pole
(FP) = cyan, inferior frontal gyrus (IFG) = gray, middle frontal gyrus
(MFG) = yellow, superior frontal gyrus (SFG) = magenta, premotor cortex
(PrM) = blue, precentral gyrus (PrCG) = green, postcentral gyrus
(PoCG) = red)]. The anatomic underlay used for illustration is the MNI152
T1-weighted 1 mm brain. (B) Mean normalized number of voxels (expressed
as a percentage of the total number of voxels in the target mask) connected to
each of the seven different cortical masks.

Advancing age is associated with deleterious changes in
brain structure and cognition. Cumulative evidence suggests
that age-related changes in vascular function contribute to these
declines (Henry Feugeas et al., 2005; Giannakopoulos et al., 2007;
Barnes, 2015). We therefore chose to focus the attention of
this study on determining the relationship between endothelial
function and neuroimaging markers ofWM health. We observed
a positive correlation between RHI and FA across the genu
and anterior portions of the body of the corpus callosum, but
observed no relationship between WMH volume and RHI. Our
results build on previous findings that cardiorespiratory fitness, a
benefactor of endothelial health, is related toWMmicrostructure
(Marks et al., 2011; Johnson et al., 2012; Voss et al., 2013),
and support findings that WM microstructure may be a more
sensitive, and early, marker of the insidious decline ofWMhealth
(Pelletier et al., 2015).

The pathogenesis of WM damage as a result of age-related
changes in vascular health is unknown. It has been proposed
that small vessel disease leads to an initial loss of smooth
muscle, followed by vessel wall thickening, reduced cerebral
blood flow, chronic ischemia, demyelination, and subsequent
leukoaraiosis (Greenberg et al., 2009; Pantoni, 2010). A
recent review by Poggesi et al. (2016) offers insight into the
potential pathophysiology behind our findings. Specifically,
the response of endothelial cells to pathologic stimuli
promote the initiation of vascular compromise (Virmani
et al., 2000), whereas the presence of WMHs are associated
with more chronic phases of vascular compromise, including
breakdown of the blood-brain barrier (Young et al., 2008).
More specifically, systemic indicators of inflammation, such
as endothelial expression of C-reactive protein (CRP), are
negatively correlated with FA, despite showing no relationship
with WMHs (Wersching et al., 2010; Miralbell et al., 2012).
WMHs, on the other hand, are strongly associated with
pulse-wave velocity (Singer et al., 2014), a measure indicative
of chronic vascular compromise, arterial stiffness. Thus,

RHI appears to be a marker of endothelial-dependent
microvascular function, which has also been reported in
high-risk cardiovascular patients (Matsuzawa et al., 2010;
Michelsen et al., 2016). Our findings suggest that declines in
endothelial function may represent an early, preclinical indicator
of WM health.

Tractography results suggest that the potential benefits
of endothelial health are associated with a functionally
heterogenous portion of the corpus callosum. For example,
endothelial health was positively associated with WM
anatomical connections between homologous prefrontal
regions. In particular, the number of corpus callosum seed
voxels interconnecting the FP and SFG were significantly higher
than those interconnecting homologous somatosensory or
pre-motor cortices. The FP and SFG contribute to a range of
high-level cognitive functions including relational integration
(Bunge et al., 2009), subgoal monitoring and integration during
working memory (Braver and Bongiolatti, 2002), task switching
(Armbruster et al., 2012) and inhibitory control (Li et al., 2006).

The location of the relationship between endothelial function
and WM microstructure may be particularly important to the
study of aging given that these tracts are especially vulnerable
to age-related declines (Sullivan and Pfefferbaum, 2006; Bennett
et al., 2010). The corpus callosum is one of the brain’s main
commissural tracts that permits interhemispheric transmission
of sensory, motor and cognitive information, and we have
previously shown that WM microstructure in the genu of
the corpus callosum mediates the relationship between age
and the blood oxygen level dependent (BOLD) signal during
task switching (Zhu et al., 2014). Collectively, these findings
suggest that endothelial function is related to WM tracts
important for maintaining neural efficiency and executive
function.

To determine the functional consequences associated with
higher WM microstructure and superior endothelial function,
we explored the relationship between a measure of executive
function, the TMT, and both FA and RHI. Slowed performance
on Trail B compared to Trail A (Trail B − Trail A) represents
an impaired ability to execute and modify a planned action
to switch between sequential numbers and letters. Thus,
smaller differences in Trail B compared to Trail A suggest
superior executive function. We observed that higher FA
in the genu and body of the corpus callosum, and higher
RHI values, were associated with smaller differences in Trail
B compared to Trail A. These findings support previously
reported associations between reactive hyperemia and executive
function (Lim et al., 2015). Thus, superior endothelial function
may serve as a peripheral marker of WM and cognitive
health.

The present study has several caveats that highlight areas
that need further investigation. First, the cross-sectional nature
of our study limits the ability to draw causal conclusions
about endothelial function and WM microstructure. The
relationship observed in the present study serves to justify
future intervention studies to determine if improved endothelial
health boosts WM microstructure. Second, longitudinal designs
are required to determine if temporal changes in endothelial

Frontiers in Aging Neuroscience | www.frontiersin.org 6 August 2017 | Volume 9 | Article 255

http://www.frontiersin.org/Aging_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Aging_Neuroscience/archive


Johnson et al. Endothelial Function and WM Health

health and WM microstructure track with age-related declines
in executive function. Third, this study focused on peripheral
measures of endothelial function by measuring reactive
hyperemia at the fingertip. It is important to note that
cerebral vessels are functionally and structurally different
from systemic vessels (Cipolla, 2009), requiring future studies
to explore more central measures of flow-mediated dilation.
Finally, the presence of cerebral microbleeds may also play
a critical role in WM health. Future studies should acquire
susceptibility-weighted images to determine the relationship
between reactive hyperemia, WM microstructure and degree of
microbleeds.

In conclusion, our results demonstrate that a peripheral
measure of endothelial function, RHI, is positively correlated
with WM microstructure in the genu and body of the
corpus callosum in older adults, but is not related to
WMH volume. The observed RHI-WM relationship was
observed in the genu of the corpus callosum, a region
sensitive to age-related declines. The results from tractography
analyses suggest that portions of the corpus callosum most
strongly correlated with WM microstructure were those
interconnecting homologous prefrontal cortex regions involved
in higher-level cognitive processes. These findings motivate
future longitudinal studies aimed to determine if increasing
endothelial function, through lifestyle modification, attenuates
age-related declines in WM microstructure and executive
function.
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